To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can b...To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.展开更多
Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at ...Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.展开更多
On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication S...On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.展开更多
Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less desig...Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design,they generally suffer from severe mass transfer limitations with respect to diffusion transport.To address this issue,a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed.Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115%higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers.Moreover,the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance,which is distinct from the constantly growing pattern in the grooveless design.In addition,a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed.Further,a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density.The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.展开更多
Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of...Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of a rotating slanted hotwire is introduced to measure the stator outlet three-dimensional flow field.The procedure for solving the mean three-dimensional velocity component involving the least-squares technique can be accomplished via the LSQNONLIN optimization function of Matlab.Under different work conditions,the stator outlet secondary flow is more intense at higher inlet flux.Moreover,the shortest stator height will lead to the most intense secondary flow,which gains the largest axial velocity component(w) and radial velocity component (u),but the smallest circumferential velocity component(v).展开更多
Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the o...Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the operation safety and success of engineering accidence treatment. In this paper, by comprehensive consideration of wellbore structure, string assembly, string load and workover operation conditions, the workover string mechanical model has been built under three kinds of working states of lifting, lowering and rotating. The downhole string mechanics has been analyzed and calculated. By field verification, the string assembly, tool selection and operation parameter optimization can be achieved, which can improve the safety and success rates of workover engineering accident treatment.展开更多
To enhance the comprehension of flow characteristics and enrich the well-test theory of slanted wells,this study established a well-test model for a slanted well in a heterogeneous multi-zonal reservoir.The model cons...To enhance the comprehension of flow characteristics and enrich the well-test theory of slanted wells,this study established a well-test model for a slanted well in a heterogeneous multi-zonal reservoir.The model considered closed boundaries at both the top and bottom,as well as an external boundary with infinite,closed,or constant pressure on the horizontal plane.We took the bi-zonal composite model as an example to carry out concrete analysis.Various contemporary mathematical techniques,including Laplace integral transformation,separation of variables,and eigenfunction methods,were employed to solve the model.The pressure solution in real space was obtained through Duhamel's principle and Stehfest numerical inversion,then analytical curves created,and flow stages were defined for a slanted well in a bi-zonal composite reservoir.In addition,we performed a sensitivity analysis on some parameters affecting the curves.For a tri-zonal composite model,we also plotted the well-test curves and categorized them.Finally,we validated the model through the interpretation of an example well.The results show that the fluid flow of a slanted well in a bi-zonal composite reservoir can be divided into seven main stages,including wellbore storage effect(WSE)stage,skin effect(SE)stage,linear flow(LF)stage,radial flow(RF)stage of the 1st zone,transitional flow(TF)stage from the 1st to the 2nd zone,RF stage of the 2nd zone,and the external boundary response stage.The position of the pressure curve at the SE stage and LF stage decreases as the length and inclination angle increase.Correspondingly,the pressure curve at the RF stage of the 2nd zone and external boundary response stage decreases with increasing mobility ratio.Furthermore,as the radius of the 1st zone increases,the pressure curve at the RF stage of the 1st zone and the TF stage shifts towards the right.The established model and plotted curves provide a theoretical basis for further studies on the flow behavior of slanted wells in composite reservoirs.展开更多
In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated...In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated. Compared with the experimental hydraulic performance curves, the numerical results show that the filter-based model is better than the standard k-ε model to predict the parameters of hydraulic performancE. In cavitation simulation, compared with the experimental results, the proposed numerical method has good predicting ability. Under different cavitation conditions, the internal cavitating flow fields within slanted axial-flow pump are investigated. Compared with flow visualization results, the major internal flow features can be effectively grasped. In order to explore the origin of the cavitation performance breakdown, the Boundary Vorticity Flux (BVF) is introduced to diagnose the cavitating flow fields. The analysis results indicate that the cavitation performance drop is relevant to the instability of cavitating flow on the blade suction surface.展开更多
Based on the CFD technique, fifteen cases were evaluated for the airflows and pollutant dispersions inside urban street canyons formed by slanted roof buildings. The simulated wind fields and concentration contours sh...Based on the CFD technique, fifteen cases were evaluated for the airflows and pollutant dispersions inside urban street canyons formed by slanted roof buildings. The simulated wind fields and concentration contours show that W/H, W/h and h/H (where W is the street width, and Hand h are the heights of buildings at the leeward and windward sides of the street, respectively) are the crucial factors in determining the vortex structure and pollutant distribution within a canyon. It is concluded that (1) in a symmetrical canyon, at W/H =0.5 two vortices (an upper clockwise vortex between the slanted roofs and a lower counter-clockwise one) are developed and pollutants accumulate on the windward side of the street, whereas at w/H=2.0 only one clockwise vortex is generated and thus pollution piles up on the leeward side, (2) in a step-up canyon with W/H=0.5 to 2.0 (at h/H =1.5 to 2.0)and a step-down canyon with W/h=1.0 (at h/H =0.5 to 0.667), the pollution level close to the lower building is higher than that close to the taller building since a clockwise vortex is generated in the step-up canyon and a counter-clockwise one in the step-down canyon, (3) in a narrow step-down canyon with W/h=0.5 (at h/H =0.667) very poor ventilation properties is detected, and inside a wider step-down canyon with W/h=2.0 the vortex structure and consequently pollutant distribution varies greatly with h/H.展开更多
This paper presents the design,fabrication,and characterization of a novel high quality factor(Q)resonant pitch/roll gyroscope implemented in a 40μm(100)silicon-on-insulator(SOI)substrate without using the deep react...This paper presents the design,fabrication,and characterization of a novel high quality factor(Q)resonant pitch/roll gyroscope implemented in a 40μm(100)silicon-on-insulator(SOI)substrate without using the deep reactive-ion etching(DRIE)process.The featured silicon gyroscope has a mode-matched operating frequency of 200 kHz and is the first out-of-plane pitch/roll gyroscope with electrostatic quadrature tuning capability to fully compensate for fabrication non-idealities and variation in SOI thickness.The quadrature tuning is enabled by slanted electrodes with sub-micron capacitive gaps along the(111)plane created by an anisotropic wet etching.The quadrature cancellation enables a 20-fold improvement in the scale factor for a typical fabricated device.Noise measurement of quadrature-cancelled mode-matched devices shows an angle random walk(ARW)of 0.63°√h^(−1) and a bias instability of 37.7°h^(−1),partially limited by the noise of the interface electronics.The elimination of silicon DRIE in the anisotropically wet-etched gyroscope improves the gyroscope robustness against the process variation and reduces the fabrication costs.The use of a slanted electrode for quadrature tuning demonstrates an effective path to reach high-performance in future pitch and roll gyroscope designs for the implementation of single-chip high-precision inertial measurement units(IMUs).展开更多
Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution...Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.展开更多
This paper presents a novel structure for improving the stability and the mechanical noise of micromachined gyroscopes. Only one slanted cantilever is used for suspension in this gyroscope, so the asymmetry spring and...This paper presents a novel structure for improving the stability and the mechanical noise of micromachined gyroscopes. Only one slanted cantilever is used for suspension in this gyroscope, so the asymmetry spring and the thermal stress, which most micromachined gyroscopes suffer from, are reduced. In order to reduce the mechanical noise, the proof masses are designed to be much larger than in most micromachined gyroscopes. The gyroscope chip is sealed at 0.001 Pa vacuum. A gyroscope sample and its read-out circuit are fabricated. The scale factor of this gyroscope is measured as 57.6 mV/(deg/sec) with a nonlinearity better than 0.12% in a measurement range of ±100 deg/sec. The short-term bias stability in 20 min is 60 deg/h.展开更多
The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source S...The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.展开更多
The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) a...The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.展开更多
基金financially supported by the national 863 program(2013AA064202)Marine subject interdisciplinary and guidance fund of Zhejiang University(188040+193414Y01)
文摘To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.
基金financial support from the special fund of China’s central government for the development of local colleges and universities―the project of national first-level discipline in Oil and Gas Engineering, the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019)the National Program on Key fundamental Research Project (973 Program, Grant No. 2011CB201005)
文摘Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172031)
文摘On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
基金supported by the National Natural Science Foundation of China(No.51606164).
文摘Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design,they generally suffer from severe mass transfer limitations with respect to diffusion transport.To address this issue,a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed.Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115%higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers.Moreover,the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance,which is distinct from the constantly growing pattern in the grooveless design.In addition,a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed.Further,a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density.The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.
文摘Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of a rotating slanted hotwire is introduced to measure the stator outlet three-dimensional flow field.The procedure for solving the mean three-dimensional velocity component involving the least-squares technique can be accomplished via the LSQNONLIN optimization function of Matlab.Under different work conditions,the stator outlet secondary flow is more intense at higher inlet flux.Moreover,the shortest stator height will lead to the most intense secondary flow,which gains the largest axial velocity component(w) and radial velocity component (u),but the smallest circumferential velocity component(v).
文摘Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the operation safety and success of engineering accidence treatment. In this paper, by comprehensive consideration of wellbore structure, string assembly, string load and workover operation conditions, the workover string mechanical model has been built under three kinds of working states of lifting, lowering and rotating. The downhole string mechanics has been analyzed and calculated. By field verification, the string assembly, tool selection and operation parameter optimization can be achieved, which can improve the safety and success rates of workover engineering accident treatment.
文摘To enhance the comprehension of flow characteristics and enrich the well-test theory of slanted wells,this study established a well-test model for a slanted well in a heterogeneous multi-zonal reservoir.The model considered closed boundaries at both the top and bottom,as well as an external boundary with infinite,closed,or constant pressure on the horizontal plane.We took the bi-zonal composite model as an example to carry out concrete analysis.Various contemporary mathematical techniques,including Laplace integral transformation,separation of variables,and eigenfunction methods,were employed to solve the model.The pressure solution in real space was obtained through Duhamel's principle and Stehfest numerical inversion,then analytical curves created,and flow stages were defined for a slanted well in a bi-zonal composite reservoir.In addition,we performed a sensitivity analysis on some parameters affecting the curves.For a tri-zonal composite model,we also plotted the well-test curves and categorized them.Finally,we validated the model through the interpretation of an example well.The results show that the fluid flow of a slanted well in a bi-zonal composite reservoir can be divided into seven main stages,including wellbore storage effect(WSE)stage,skin effect(SE)stage,linear flow(LF)stage,radial flow(RF)stage of the 1st zone,transitional flow(TF)stage from the 1st to the 2nd zone,RF stage of the 2nd zone,and the external boundary response stage.The position of the pressure curve at the SE stage and LF stage decreases as the length and inclination angle increase.Correspondingly,the pressure curve at the RF stage of the 2nd zone and external boundary response stage decreases with increasing mobility ratio.Furthermore,as the radius of the 1st zone increases,the pressure curve at the RF stage of the 1st zone and the TF stage shifts towards the right.The established model and plotted curves provide a theoretical basis for further studies on the flow behavior of slanted wells in composite reservoirs.
基金Project supported by the Key Research Projects of Shanghai Science and Technology Commission(GrantNo.10100500200)the Science and Technology Plan of Zhejiang Province(Grant No.2011C11068)the Shanghai Program for Innovative Research Team in Universities
文摘In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated. Compared with the experimental hydraulic performance curves, the numerical results show that the filter-based model is better than the standard k-ε model to predict the parameters of hydraulic performancE. In cavitation simulation, compared with the experimental results, the proposed numerical method has good predicting ability. Under different cavitation conditions, the internal cavitating flow fields within slanted axial-flow pump are investigated. Compared with flow visualization results, the major internal flow features can be effectively grasped. In order to explore the origin of the cavitation performance breakdown, the Boundary Vorticity Flux (BVF) is introduced to diagnose the cavitating flow fields. The analysis results indicate that the cavitation performance drop is relevant to the instability of cavitating flow on the blade suction surface.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70371011) the Science Research Foundation of Shanghai Municipal Commission of Education (Grant No. 06EZ007).
文摘Based on the CFD technique, fifteen cases were evaluated for the airflows and pollutant dispersions inside urban street canyons formed by slanted roof buildings. The simulated wind fields and concentration contours show that W/H, W/h and h/H (where W is the street width, and Hand h are the heights of buildings at the leeward and windward sides of the street, respectively) are the crucial factors in determining the vortex structure and pollutant distribution within a canyon. It is concluded that (1) in a symmetrical canyon, at W/H =0.5 two vortices (an upper clockwise vortex between the slanted roofs and a lower counter-clockwise one) are developed and pollutants accumulate on the windward side of the street, whereas at w/H=2.0 only one clockwise vortex is generated and thus pollution piles up on the leeward side, (2) in a step-up canyon with W/H=0.5 to 2.0 (at h/H =1.5 to 2.0)and a step-down canyon with W/h=1.0 (at h/H =0.5 to 0.667), the pollution level close to the lower building is higher than that close to the taller building since a clockwise vortex is generated in the step-up canyon and a counter-clockwise one in the step-down canyon, (3) in a narrow step-down canyon with W/h=0.5 (at h/H =0.667) very poor ventilation properties is detected, and inside a wider step-down canyon with W/h=2.0 the vortex structure and consequently pollutant distribution varies greatly with h/H.
基金This work is supported by the DARPA MTO,Single-Chip Timing and Inertial Measurement Unit(TIMU)program under contract#N66001-11-C-4176.
文摘This paper presents the design,fabrication,and characterization of a novel high quality factor(Q)resonant pitch/roll gyroscope implemented in a 40μm(100)silicon-on-insulator(SOI)substrate without using the deep reactive-ion etching(DRIE)process.The featured silicon gyroscope has a mode-matched operating frequency of 200 kHz and is the first out-of-plane pitch/roll gyroscope with electrostatic quadrature tuning capability to fully compensate for fabrication non-idealities and variation in SOI thickness.The quadrature tuning is enabled by slanted electrodes with sub-micron capacitive gaps along the(111)plane created by an anisotropic wet etching.The quadrature cancellation enables a 20-fold improvement in the scale factor for a typical fabricated device.Noise measurement of quadrature-cancelled mode-matched devices shows an angle random walk(ARW)of 0.63°√h^(−1) and a bias instability of 37.7°h^(−1),partially limited by the noise of the interface electronics.The elimination of silicon DRIE in the anisotropically wet-etched gyroscope improves the gyroscope robustness against the process variation and reduces the fabrication costs.The use of a slanted electrode for quadrature tuning demonstrates an effective path to reach high-performance in future pitch and roll gyroscope designs for the implementation of single-chip high-precision inertial measurement units(IMUs).
文摘Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.
基金supported by the National Natural Science Foundation of China (No. 50375154)the NUDT Innovation Project for Excellent Postgraduates
文摘This paper presents a novel structure for improving the stability and the mechanical noise of micromachined gyroscopes. Only one slanted cantilever is used for suspension in this gyroscope, so the asymmetry spring and the thermal stress, which most micromachined gyroscopes suffer from, are reduced. In order to reduce the mechanical noise, the proof masses are designed to be much larger than in most micromachined gyroscopes. The gyroscope chip is sealed at 0.001 Pa vacuum. A gyroscope sample and its read-out circuit are fabricated. The scale factor of this gyroscope is measured as 57.6 mV/(deg/sec) with a nonlinearity better than 0.12% in a measurement range of ±100 deg/sec. The short-term bias stability in 20 min is 60 deg/h.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.CEAIEF 20220201)the National Natural Science Foundation of China(Nos.42374113 and 42074101)the Central Publicinterest Scientific Institution Basal Research Fund(No.CEAIEF20230204).
文摘The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.
文摘The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60375021)教育部留学回国人员科研启动基金(The Project-Sponsored by SRF for ROCS+5 种基金SEM)湖南省杰出青年基金(the Fund of Hunan Province for Distinguished Young Scholarunder Grant No.05JJ10011)湖南省自然基金重点基金(No.04JJ20010)湖南省教育厅重点项目(the Research Project of Department ofEducation of Hunan ProvinceChina under Grant No.04A056No.05C092)。