A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a yea...A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a year at No. 1 Steelmaking Plant of Shanxi Taigang Stainless Corporation Limited. The essential fact of the new EAF steelmaking process was to charge hot metal in two portions or steps: firstly, 35wt%-40wt% hot metal was pretreated by blowing oxygen in a specially designed reactor for decar burization and improving hot metal temperature and melting premelted slag; secondly, 30wt% hot metal was charged into EAF with high basicity refining slags from ladle furnace (LF)-vacuum degassing furnace (VD) refining process. The results show that the hot metal charging ratio can reach to about 65wt%-70wt% for the new EAF steelrnaking process; meanwhile, the tap-to-tap time of a 50 t EAF can shorten by 5-10 min, the electricity consumption can decrease by 35-50 kW·h/t, the lime consumption can reduce by 10.5 kg/t of molten steel, and the content of harmful heavy metals in molten steel can be easily controlled to less than the upper limits of aimed steel specification or grade compared with the traditional EAF steelmaking process. In addition, the dephosphorization ability shows a slight strengthening, however, a small degree of lessening for desulphurization ability is observed for the new EAF steelmaking process, but the weakness of desulphurization ability cannot become an obstacle to its further application since a stronger desulphurization ability can be achieved during secondary refining of LF coupled with VD after EAF steelmaking process.展开更多
High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave a...High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave at 300 -C for 1 h,and the treated coals were analyzed,along with the oxygen-containing functional groups determined by Fourier transform infrared spectrometer(FT-IR).Then the alkali species and other components in the coal ash were quantified by X-ray fluorescence(XRF)for evaluating the ash slagging and fouling tendency.Apart from this,FactSage was adopted to simulate the occurrence and transformation of alkali species during coal thermal conversion ending at various temperatures.The findings indicate that the treated coals are superior to the parent ones in terms of certain remarkable changes via HTP.The moisture,oxygen and sulfur of the hydrothermally treated coals decline obviously,while the calorific value rises sharply.HTP could reduce the alkali species to less than 2%(%,by weight,equivalent to Na2O in dry ash),with a maximum removal ratio of 88.9%,lowering the ash slagging and fouling tendency.The proposed mechanism of HTP was that the alkali species in coal matrix became released due to the breakage of the coal functional groups and micropores during HTP.展开更多
Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni ...Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni coatings were applied in modifying the deposition surface to control slagging.The growth characteristics of the slag were studied using an online digital image technique.Scanning electron microscopy linked with energy-dispersive X-ray analysis and X-ray diffraction(XRD)were applied to investigate the microstructure,semi-quantitative chemical composition,and mineralogy of slag samples.Ni coating demonstrated a positive effect on the mitigation of slagging.Results revealed that the thicknesses of the slag initially increased with experimental time and then inclined toward stable values for both cases(Case 1:substrate material;Case 2:modified surface).The stable thicknesses for Cases 1 and 2 were 4.91 mm and 3.95 mm,respectively.The heat transfer efficiency was improved by approximately 18.2%with the application of Ni coating for probe surface modification.The mechanism of the mitigation of slagging was investigated in this study.XRD results revealed that the content of alkali reduced when the surface was coated with Ni.The alkali significantly affected the adhesion behavior of the deposition.Hence,Ni coating showed potential in reducing slagging and increasing the efficiency of boilers.The overall study makes a contribution to a deep understanding of the effect of Ni coating on the growth characteristics of the slag.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy...This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and X-ray Fluorescence (XRF) to acquire the microstructure, chemical composition, and mineralogy. The deposit thickness of three blends was analyzed between their parent coal A (Datong) and coal B (Shan), and we noted that the time to reach a stable stage decreased with the ratio of coal B. The addition of coal A into coal B could remarkably restrained the growth and thickness of ash deposits. The results of XRD analysis indicated the initial layer was predominantly comprised of the crystalline minerals quartz, anorthite, or albite except for coal B. All of the blends and coals contained quartz and Ca- to Al-silicates (Ca0.68Na0.32)(All.68Si0.32)Si2O8 in the slag layer where iron-bearing minerals (e.g., ilvaite) were altered into an amorphous phase. The result of SEM-EDX suggested that there was an elemental disparity between the coal ash and deposit.展开更多
Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effect...Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.展开更多
In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan ...In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan electron microscopy and energy dispersive X-ray analysis, and the transformation characteristics of the compositions and crystal phases were studied. The results show that the size of slag granules decreases as the slagging temperature increases; the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃, and that of the coal ash II reduces to about 65% when the temperature is increased up to 1 500 ℃; the encroachment of molten coal ash to the combustion liner is strengthened. At the same time, the diffusion and the segregation of the compositions in combustion liners have selectivity, which is in favor of enhancing the content of crystal phases, weakening the conglutination among molten slag compositions and combustion liner, and avoiding yielding big clinkers. But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner, and makes the slag encroachment to the liner become more serious.展开更多
Wear of the spent high chrome brick in slagging gasifier was studied. The result shows that erosion and spalling are the m, ain wear mechanism of high chrome brick and the CaO content of coal slag is crucial to wear o...Wear of the spent high chrome brick in slagging gasifier was studied. The result shows that erosion and spalling are the m, ain wear mechanism of high chrome brick and the CaO content of coal slag is crucial to wear of high chrome brick.展开更多
In this paper a brief introduction on design features,process of hot-fire check out testsand typical testing results of a 20 MWt coal-fired MHD slagging combustor is presented.Onthe basis of the testing results we con...In this paper a brief introduction on design features,process of hot-fire check out testsand typical testing results of a 20 MWt coal-fired MHD slagging combustor is presented.Onthe basis of the testing results we conclude that all the design requirements of the combustorare satisfied.Analysis on the experimental results is also made.The reasons that causeslower rate of slag rejection are discussed,and the ways of raising slag rejection rate are con-sidered.展开更多
The slagging characteristic of coal effects the safe operation of boiler unit directly, the study on coal slagging is paid more and more attention by scholars of the world. Because of the complexity of coal characteri...The slagging characteristic of coal effects the safe operation of boiler unit directly, the study on coal slagging is paid more and more attention by scholars of the world. Because of the complexity of coal characteristic, the blending coals slagging characteristic is more complex than single coal. The study method of blending coals characteristic is the same as the single coal method, but the simple method can’t distinguish the blending coals slagging characteristic well and truly. This paper gives the new distinguish method of blending coals slagging characteristic based on experimentation condition, it is the rate of slag and furnace refuse. The rate of slagging on furnace wall and the refuse on furnace bottom has utilized to distinguish the slagging characteristic of coal. The result shows that the rate of slag and furnace refuse method has better veracity.展开更多
The type selection of burning equipment for boilers is affected significantly by the slagging characteristics of coal. Based on the engineering statistics method, the designed furnace parameters are obtained from the ...The type selection of burning equipment for boilers is affected significantly by the slagging characteristics of coal. Based on the engineering statistics method, the designed furnace parameters are obtained from the 600-MW and 1 000-MW boilers with tangential firing and wall firing. The power and arrangement of the burners are analyzed. Their impacts on slagging on heating surfaces and the carbon contents in the ash and cinders are also discussed. Thermal parameters of furnace are recommended for boilers of 600 MW and 1 000 MW firing slagging coal in the design. The static or rotary classifier should be the first choice for the pulverizing system.展开更多
During secondary refining of molten steel, reaction of steel-slag has great influence on the quality of steel. Taking high aluminium steel ([Al]≥0.8%) for instance, reaction control of 4[Al]+3(SiO2) = 2(Al2O3)+3[Si] ...During secondary refining of molten steel, reaction of steel-slag has great influence on the quality of steel. Taking high aluminium steel ([Al]≥0.8%) for instance, reaction control of 4[Al]+3(SiO2) = 2(Al2O3)+3[Si] was discussed by both thermodynamics calculation and industrial experiments. The results show that content of silicon increased sharply when content of SiO2 in slag exceeded 10%. In order to prevent the increment of silicon content and reoxidation for high aluminium steel, reasonable component range of LF refining slag is: %CaO/%Al2O3=1.6-1.9, %SiO2 【10. Results of the industrial experiments indicate that the CaO-Al2O3 based refining slag has strong ability of desulfurization and inclusion absorption. Average desulfurization rate is 80%, and T[O] reduces above 50% after refining, with the average sulfur content and T[O] about 0.0025% and 11×10-6,respectively, which can meet the requirements of secondary refining and obtain good castability of steel in continuous casting process.展开更多
Coal is one of the main sources of energy in many parts of the world and has one of the largest reserves/production ratios amongst all the non-renewable energy sources. Gasification of coal is one among the advanced t...Coal is one of the main sources of energy in many parts of the world and has one of the largest reserves/production ratios amongst all the non-renewable energy sources. Gasification of coal is one among the advanced technologies that has potential to be used in a carbon constrained economy. However, gasification availability at several commercial demonstrations had run into problems associated with fouling of syngas coolers due to unpredictable flyash formation and unburnt carbon losses. Computer models of gasifiers are emerging as a powerful tool to predict gasifier performance and reliability, without expensive testing. Most computer models used to simulate gasifiers tend to model coal as a homogenous entity based on bulk properties. However, coal is a heterogeneous material and comminution during feedstock preparation produces particle classes with different physical and chemical properties. It is crucial to characterize the heterogeneity of the feedstocks used by entrained flow gasifiers. To this end, a low ash US bituminous coal that could be used as a gasifier feedstock was segregated into density and size fractions to represent the major mineral matter distributions in the coal. Float and sink method and sieving were employed to partition the ground coal. The organic and inorganic content of all density fractions was characterized for particle size distribution, heating value, ultimate analysis, proximate analysis, mineral matter composition, ash composition, and petrographic components, while size fractions were characterized for heating value, ash composition, ultimate and proximate analysis. The proximate, ultimate and high heating value analysis showed that variation in these values is limited across the range of size fractions, while the heterogeneity is significant over the range of density fractions. With respect to inorganics, the mineral matter in the heavy density fractions contribute significantly to the ash yield in the coal while contributing very little to its heating value. The ash yield across the size fractions exhibits a bimodal distribution. The heterogeneity is also significant with respect to the base-to-acid ratio across the size and density fractions. The results indicate that the variations in organic and inorganic content over a range of density and size classes are significant, even in the low ash, vitrinite rich coal sample characterized here. Incorporating this information appropriately into particle population models used in gasifier simulations will significantly enhance their accuracy of performance predictions.展开更多
Carbon dioxide (CO_(2)) mineralization technology has attracted significant attention, due tothe synergistic terminal treatment of CO_(2) and industrial waste. The combined CO_(2) mineralizationprocess with steel ente...Carbon dioxide (CO_(2)) mineralization technology has attracted significant attention, due tothe synergistic terminal treatment of CO_(2) and industrial waste. The combined CO_(2) mineralizationprocess with steel enterprises is a promising route to simultaneously address CO_(2)emissions and SS treatment. Recently, a serial of the relevant work focus on a single type ofsteel slag (SS), and the understanding of CO_(2) absorption by mineralization of various SS isvery lacking.Meanwhile, it is urgent requirement for systematic summary and discussion onhow to make full use of the mineralized products produced after the mineralization of CO_(2)in SS. This review aims to investigate the progress of CO_(2) mineralization using SS, includingthe potential applications of mineralization products, as well as the environmental impactand risk assessment ofmineralization product applications. Currently, the application of SSmineralization products is primarily focused on their use as construction materials with loweconomic value. With usage of the mineralization products for ecological restoration (e.g.sandy soil remediation) was treated as an advanced route, but still remaining challenge infunctional materials preparation, and its technical economy and possible hazards need tobe further explored by long-term experimental tests.展开更多
In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are cru...In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are crucial for performance optimization and regulation.However,existing studies have yet to fully reveal the underlying synergistic mechanisms,which limits the application and promotion of high SS content in mine backfill and low-carbon building materials.This study systematically explores the synergistic effects between various solid wastes and their regulation of the hydration process in the SS-based cementitious system through multi-scale characterization techniques.The results show that GBFS,by releasing active Si^(4+)and Al^(3+),triggers a synergistic activation effect with Ca^(2+)provided by SS,promoting the formation of C-S-H gel and ettringite,significantly optimizing the hardened paste microstructure.When the GBFS content reaches 30%,the C-S-H content increases by 40.8%,the pore size distribution improves,the proportion of large pores decreases by 68.7%,and the 90-day compressive strength increases to 5 times that of the baseline group.The sulfate activation effect of DG accelerates the hydration of silicate minerals,but excessive incorporation(>16%)can lead to microcracks caused by the expansion of AFt crystals,resulting in a strength reduction.Under the synergistic effect of 8%DG and 30%GBFS,the hydration reaction is most intense,with the peak heat release rate reaching 0.92 mW/g and the cumulative heat release amount being 240 J/g.By constructing a“SS-GBFS-DG-cement”quaternary synergistic system(mass ratio range:SS:GBFS:cement:DG=(50–62):(20–40):10:(8–12)),the matching of active components in high-content SS systems was optimized,significantly improving microstructural defects and meeting engineering application requirements.This study provides a theoretical basis for the component design and performance regulation of high-content SS-based cementitious materials.展开更多
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(...The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.展开更多
The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination ...The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio...A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.展开更多
In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horiz...In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horizontal tubular furnace system and the FactSage 7.2 software,respectively.The slagging tendencies of three HACs were anticipated by applying different indexes of ash chemistry characteristics prior to experiments,but the determined results were found inconsistent.The relationship between Na retained ratio (RNa) and the ash fusion temperatures (AFTs) of gasification residues demonstrated that the AFTs of coal with high RNa are low,while AFTs of coal with low RNa are high.Nevertheless,when the residues contained a large number of calcium-containing silicates and aluminosilicates,the ATFs were reduced significantly even if its RNa stayed at a low level.Furthermore,the operating temperatures of the three coals (in order of Mulei coal,Shaerhu coal,and Tietou coal) were suggested to be controlled below 1150℃,1100℃,and 950℃,respectively.展开更多
文摘A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a year at No. 1 Steelmaking Plant of Shanxi Taigang Stainless Corporation Limited. The essential fact of the new EAF steelmaking process was to charge hot metal in two portions or steps: firstly, 35wt%-40wt% hot metal was pretreated by blowing oxygen in a specially designed reactor for decar burization and improving hot metal temperature and melting premelted slag; secondly, 30wt% hot metal was charged into EAF with high basicity refining slags from ladle furnace (LF)-vacuum degassing furnace (VD) refining process. The results show that the hot metal charging ratio can reach to about 65wt%-70wt% for the new EAF steelrnaking process; meanwhile, the tap-to-tap time of a 50 t EAF can shorten by 5-10 min, the electricity consumption can decrease by 35-50 kW·h/t, the lime consumption can reduce by 10.5 kg/t of molten steel, and the content of harmful heavy metals in molten steel can be easily controlled to less than the upper limits of aimed steel specification or grade compared with the traditional EAF steelmaking process. In addition, the dephosphorization ability shows a slight strengthening, however, a small degree of lessening for desulphurization ability is observed for the new EAF steelmaking process, but the weakness of desulphurization ability cannot become an obstacle to its further application since a stronger desulphurization ability can be achieved during secondary refining of LF coupled with VD after EAF steelmaking process.
基金the National Key Basic Research Program of China (No. 2014CB238905)
文摘High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave at 300 -C for 1 h,and the treated coals were analyzed,along with the oxygen-containing functional groups determined by Fourier transform infrared spectrometer(FT-IR).Then the alkali species and other components in the coal ash were quantified by X-ray fluorescence(XRF)for evaluating the ash slagging and fouling tendency.Apart from this,FactSage was adopted to simulate the occurrence and transformation of alkali species during coal thermal conversion ending at various temperatures.The findings indicate that the treated coals are superior to the parent ones in terms of certain remarkable changes via HTP.The moisture,oxygen and sulfur of the hydrothermally treated coals decline obviously,while the calorific value rises sharply.HTP could reduce the alkali species to less than 2%(%,by weight,equivalent to Na2O in dry ash),with a maximum removal ratio of 88.9%,lowering the ash slagging and fouling tendency.The proposed mechanism of HTP was that the alkali species in coal matrix became released due to the breakage of the coal functional groups and micropores during HTP.
基金Supported by the National Natural Science Foundation of China(51476137)National Science Fund for Distinguished Young Scholars(51825605)
文摘Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni coatings were applied in modifying the deposition surface to control slagging.The growth characteristics of the slag were studied using an online digital image technique.Scanning electron microscopy linked with energy-dispersive X-ray analysis and X-ray diffraction(XRD)were applied to investigate the microstructure,semi-quantitative chemical composition,and mineralogy of slag samples.Ni coating demonstrated a positive effect on the mitigation of slagging.Results revealed that the thicknesses of the slag initially increased with experimental time and then inclined toward stable values for both cases(Case 1:substrate material;Case 2:modified surface).The stable thicknesses for Cases 1 and 2 were 4.91 mm and 3.95 mm,respectively.The heat transfer efficiency was improved by approximately 18.2%with the application of Ni coating for probe surface modification.The mechanism of the mitigation of slagging was investigated in this study.XRD results revealed that the content of alkali reduced when the surface was coated with Ni.The alkali significantly affected the adhesion behavior of the deposition.Hence,Ni coating showed potential in reducing slagging and increasing the efficiency of boilers.The overall study makes a contribution to a deep understanding of the effect of Ni coating on the growth characteristics of the slag.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
基金the National Natural Science Foundation of China
文摘This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and X-ray Fluorescence (XRF) to acquire the microstructure, chemical composition, and mineralogy. The deposit thickness of three blends was analyzed between their parent coal A (Datong) and coal B (Shan), and we noted that the time to reach a stable stage decreased with the ratio of coal B. The addition of coal A into coal B could remarkably restrained the growth and thickness of ash deposits. The results of XRD analysis indicated the initial layer was predominantly comprised of the crystalline minerals quartz, anorthite, or albite except for coal B. All of the blends and coals contained quartz and Ca- to Al-silicates (Ca0.68Na0.32)(All.68Si0.32)Si2O8 in the slag layer where iron-bearing minerals (e.g., ilvaite) were altered into an amorphous phase. The result of SEM-EDX suggested that there was an elemental disparity between the coal ash and deposit.
文摘Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.
基金Project(50576005) supported by the National Natural Science Foundation of China
文摘In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan electron microscopy and energy dispersive X-ray analysis, and the transformation characteristics of the compositions and crystal phases were studied. The results show that the size of slag granules decreases as the slagging temperature increases; the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃, and that of the coal ash II reduces to about 65% when the temperature is increased up to 1 500 ℃; the encroachment of molten coal ash to the combustion liner is strengthened. At the same time, the diffusion and the segregation of the compositions in combustion liners have selectivity, which is in favor of enhancing the content of crystal phases, weakening the conglutination among molten slag compositions and combustion liner, and avoiding yielding big clinkers. But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner, and makes the slag encroachment to the liner become more serious.
文摘Wear of the spent high chrome brick in slagging gasifier was studied. The result shows that erosion and spalling are the m, ain wear mechanism of high chrome brick and the CaO content of coal slag is crucial to wear of high chrome brick.
基金Supported by the High Technology Research and Development Programme of China.
文摘In this paper a brief introduction on design features,process of hot-fire check out testsand typical testing results of a 20 MWt coal-fired MHD slagging combustor is presented.Onthe basis of the testing results we conclude that all the design requirements of the combustorare satisfied.Analysis on the experimental results is also made.The reasons that causeslower rate of slag rejection are discussed,and the ways of raising slag rejection rate are con-sidered.
文摘The slagging characteristic of coal effects the safe operation of boiler unit directly, the study on coal slagging is paid more and more attention by scholars of the world. Because of the complexity of coal characteristic, the blending coals slagging characteristic is more complex than single coal. The study method of blending coals characteristic is the same as the single coal method, but the simple method can’t distinguish the blending coals slagging characteristic well and truly. This paper gives the new distinguish method of blending coals slagging characteristic based on experimentation condition, it is the rate of slag and furnace refuse. The rate of slagging on furnace wall and the refuse on furnace bottom has utilized to distinguish the slagging characteristic of coal. The result shows that the rate of slag and furnace refuse method has better veracity.
文摘The type selection of burning equipment for boilers is affected significantly by the slagging characteristics of coal. Based on the engineering statistics method, the designed furnace parameters are obtained from the 600-MW and 1 000-MW boilers with tangential firing and wall firing. The power and arrangement of the burners are analyzed. Their impacts on slagging on heating surfaces and the carbon contents in the ash and cinders are also discussed. Thermal parameters of furnace are recommended for boilers of 600 MW and 1 000 MW firing slagging coal in the design. The static or rotary classifier should be the first choice for the pulverizing system.
文摘During secondary refining of molten steel, reaction of steel-slag has great influence on the quality of steel. Taking high aluminium steel ([Al]≥0.8%) for instance, reaction control of 4[Al]+3(SiO2) = 2(Al2O3)+3[Si] was discussed by both thermodynamics calculation and industrial experiments. The results show that content of silicon increased sharply when content of SiO2 in slag exceeded 10%. In order to prevent the increment of silicon content and reoxidation for high aluminium steel, reasonable component range of LF refining slag is: %CaO/%Al2O3=1.6-1.9, %SiO2 【10. Results of the industrial experiments indicate that the CaO-Al2O3 based refining slag has strong ability of desulfurization and inclusion absorption. Average desulfurization rate is 80%, and T[O] reduces above 50% after refining, with the average sulfur content and T[O] about 0.0025% and 11×10-6,respectively, which can meet the requirements of secondary refining and obtain good castability of steel in continuous casting process.
文摘Coal is one of the main sources of energy in many parts of the world and has one of the largest reserves/production ratios amongst all the non-renewable energy sources. Gasification of coal is one among the advanced technologies that has potential to be used in a carbon constrained economy. However, gasification availability at several commercial demonstrations had run into problems associated with fouling of syngas coolers due to unpredictable flyash formation and unburnt carbon losses. Computer models of gasifiers are emerging as a powerful tool to predict gasifier performance and reliability, without expensive testing. Most computer models used to simulate gasifiers tend to model coal as a homogenous entity based on bulk properties. However, coal is a heterogeneous material and comminution during feedstock preparation produces particle classes with different physical and chemical properties. It is crucial to characterize the heterogeneity of the feedstocks used by entrained flow gasifiers. To this end, a low ash US bituminous coal that could be used as a gasifier feedstock was segregated into density and size fractions to represent the major mineral matter distributions in the coal. Float and sink method and sieving were employed to partition the ground coal. The organic and inorganic content of all density fractions was characterized for particle size distribution, heating value, ultimate analysis, proximate analysis, mineral matter composition, ash composition, and petrographic components, while size fractions were characterized for heating value, ash composition, ultimate and proximate analysis. The proximate, ultimate and high heating value analysis showed that variation in these values is limited across the range of size fractions, while the heterogeneity is significant over the range of density fractions. With respect to inorganics, the mineral matter in the heavy density fractions contribute significantly to the ash yield in the coal while contributing very little to its heating value. The ash yield across the size fractions exhibits a bimodal distribution. The heterogeneity is also significant with respect to the base-to-acid ratio across the size and density fractions. The results indicate that the variations in organic and inorganic content over a range of density and size classes are significant, even in the low ash, vitrinite rich coal sample characterized here. Incorporating this information appropriately into particle population models used in gasifier simulations will significantly enhance their accuracy of performance predictions.
基金supported by the National Key Research and Development Program(Nos.2023YFC3707101 and 2023YFF0614301)the Tsinghua University Initiative Scientific Research Program(No.2023Z02JMP001)the Linghang Project of School of Environment(No.025108011).
文摘Carbon dioxide (CO_(2)) mineralization technology has attracted significant attention, due tothe synergistic terminal treatment of CO_(2) and industrial waste. The combined CO_(2) mineralizationprocess with steel enterprises is a promising route to simultaneously address CO_(2)emissions and SS treatment. Recently, a serial of the relevant work focus on a single type ofsteel slag (SS), and the understanding of CO_(2) absorption by mineralization of various SS isvery lacking.Meanwhile, it is urgent requirement for systematic summary and discussion onhow to make full use of the mineralized products produced after the mineralization of CO_(2)in SS. This review aims to investigate the progress of CO_(2) mineralization using SS, includingthe potential applications of mineralization products, as well as the environmental impactand risk assessment ofmineralization product applications. Currently, the application of SSmineralization products is primarily focused on their use as construction materials with loweconomic value. With usage of the mineralization products for ecological restoration (e.g.sandy soil remediation) was treated as an advanced route, but still remaining challenge infunctional materials preparation, and its technical economy and possible hazards need tobe further explored by long-term experimental tests.
基金funded by the National Natural Science Foundation of China(No.52308316)Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)+1 种基金Fudamental Research Funds for the CentralUniversities,CHD(No.300102265303)the Science and Technology Innovation Project of China Coal Technology&Engineering Group Shenyang Engineering Company(No.NKJ001-2025).
文摘In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are crucial for performance optimization and regulation.However,existing studies have yet to fully reveal the underlying synergistic mechanisms,which limits the application and promotion of high SS content in mine backfill and low-carbon building materials.This study systematically explores the synergistic effects between various solid wastes and their regulation of the hydration process in the SS-based cementitious system through multi-scale characterization techniques.The results show that GBFS,by releasing active Si^(4+)and Al^(3+),triggers a synergistic activation effect with Ca^(2+)provided by SS,promoting the formation of C-S-H gel and ettringite,significantly optimizing the hardened paste microstructure.When the GBFS content reaches 30%,the C-S-H content increases by 40.8%,the pore size distribution improves,the proportion of large pores decreases by 68.7%,and the 90-day compressive strength increases to 5 times that of the baseline group.The sulfate activation effect of DG accelerates the hydration of silicate minerals,but excessive incorporation(>16%)can lead to microcracks caused by the expansion of AFt crystals,resulting in a strength reduction.Under the synergistic effect of 8%DG and 30%GBFS,the hydration reaction is most intense,with the peak heat release rate reaching 0.92 mW/g and the cumulative heat release amount being 240 J/g.By constructing a“SS-GBFS-DG-cement”quaternary synergistic system(mass ratio range:SS:GBFS:cement:DG=(50–62):(20–40):10:(8–12)),the matching of active components in high-content SS systems was optimized,significantly improving microstructural defects and meeting engineering application requirements.This study provides a theoretical basis for the component design and performance regulation of high-content SS-based cementitious materials.
基金support from the National Key R&D Program(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171)+1 种基金the High Steel Center at the North China University of Technologythe University of Science and Technology Beijing,China.
文摘The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.
基金sponsored by the National Key Research and Development Program of China(2021YFB3802000 and 2021YFB3802004)the National Natural Science Foundation of China(52172016).
文摘The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金supported by the National Natural Science Foundation of China(22168032)the National Key Research and Development Program of China(2023YFC3904302,2023YFB4103500)the Key Projects of Ning Dong Energy and Chemical Industry Base(2023NDKJXMLX022).
文摘A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.
基金This work was financially supported by Beijing Municipal Science and Technology Commission(No.Z181100005118006).
文摘In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horizontal tubular furnace system and the FactSage 7.2 software,respectively.The slagging tendencies of three HACs were anticipated by applying different indexes of ash chemistry characteristics prior to experiments,but the determined results were found inconsistent.The relationship between Na retained ratio (RNa) and the ash fusion temperatures (AFTs) of gasification residues demonstrated that the AFTs of coal with high RNa are low,while AFTs of coal with low RNa are high.Nevertheless,when the residues contained a large number of calcium-containing silicates and aluminosilicates,the ATFs were reduced significantly even if its RNa stayed at a low level.Furthermore,the operating temperatures of the three coals (in order of Mulei coal,Shaerhu coal,and Tietou coal) were suggested to be controlled below 1150℃,1100℃,and 950℃,respectively.