Improving the freeze-thaw resistance of geopolymers is of great significance to ensure their durability in cold regions. This study presents an experimental investigation of optimal slag content for geopolymer composi...Improving the freeze-thaw resistance of geopolymers is of great significance to ensure their durability in cold regions. This study presents an experimental investigation of optimal slag content for geopolymer composites under freeze-thaw cycles with different freezing temperatures. Firstly, five kinds of geopolymer composites with 10.0%, 20.0%, 30.0%, 40.0%,and 50.0% slag contents and 1.0% fiber content were prepared. Freeze-thaw cycle tests at-1.0 ℃,-20.0 ℃, and-40.0 ℃ were carried out for these geopolymer composites and their physical and mechanical properties after the freeze-thaw cycle were tested. The results show that the porosity of the geopolymer composites decreases as the slag content increases. Their mass loss ratio and strength loss ratio increase gradually as the freezing temperature decreases. The mass loss ratio and strength loss ratio of geopolymer composites after freeze-thaw cycles all decrease as the slag content increases. Considering the physical and mechanical properties of geopolymers after freeze-thaw cycles, the optimal slag contents are 40.0% and 50.0%.展开更多
The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at e...The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at early stage when the CaF2 content was greater than 30 wt%, followed by a modification to the aluminosilicate-type inclusions. Because the slag was saturated by MgO, the activity of MgO was unity irrespective of CaF2 content in the slag. Thus, Mg was transferred from slag to metal phase. Mg transferred to molten steel reacted with Al2O3-rich inclusions to form MgO.Al2O3 spinel. However, the spinel inclusion was modified to aluminosilicate-type inclusions by the reaction with Si and Ca transferred from slag to molten steel about 2-3 h later.展开更多
The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant tr...The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant trials with the corresponding thermodynamic calculations and kinetic considerations. From the plant data, the total copper content in the slags was in the range of 2% to 8% (mass fraction). The mechanical entrainment of matte drops has been found to be the main cause of the copper loss. The suspension index, defined as the ratio of the mass fraction of copper in suspended matte drops in the slag to that in bulk of the matte phase, has been adopted to quantify the matte entrainment. The values of this parameter estimated in this work have been found mainly within a range of 2.5%-8.0%. The Fe3O4 content in the slag has been estimated to be the most important factor, among others, influencing the separation of slag with matte and, consequently, the copper loss from the slag.展开更多
基金supported by the National Natural Science Foundation of China(No.51627812)。
文摘Improving the freeze-thaw resistance of geopolymers is of great significance to ensure their durability in cold regions. This study presents an experimental investigation of optimal slag content for geopolymer composites under freeze-thaw cycles with different freezing temperatures. Firstly, five kinds of geopolymer composites with 10.0%, 20.0%, 30.0%, 40.0%,and 50.0% slag contents and 1.0% fiber content were prepared. Freeze-thaw cycle tests at-1.0 ℃,-20.0 ℃, and-40.0 ℃ were carried out for these geopolymer composites and their physical and mechanical properties after the freeze-thaw cycle were tested. The results show that the porosity of the geopolymer composites decreases as the slag content increases. Their mass loss ratio and strength loss ratio increase gradually as the freezing temperature decreases. The mass loss ratio and strength loss ratio of geopolymer composites after freeze-thaw cycles all decrease as the slag content increases. Considering the physical and mechanical properties of geopolymers after freeze-thaw cycles, the optimal slag contents are 40.0% and 50.0%.
文摘The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at early stage when the CaF2 content was greater than 30 wt%, followed by a modification to the aluminosilicate-type inclusions. Because the slag was saturated by MgO, the activity of MgO was unity irrespective of CaF2 content in the slag. Thus, Mg was transferred from slag to metal phase. Mg transferred to molten steel reacted with Al2O3-rich inclusions to form MgO.Al2O3 spinel. However, the spinel inclusion was modified to aluminosilicate-type inclusions by the reaction with Si and Ca transferred from slag to molten steel about 2-3 h later.
基金the National Science Foundation of China under the contract No. 59874005.]
文摘The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant trials with the corresponding thermodynamic calculations and kinetic considerations. From the plant data, the total copper content in the slags was in the range of 2% to 8% (mass fraction). The mechanical entrainment of matte drops has been found to be the main cause of the copper loss. The suspension index, defined as the ratio of the mass fraction of copper in suspended matte drops in the slag to that in bulk of the matte phase, has been adopted to quantify the matte entrainment. The values of this parameter estimated in this work have been found mainly within a range of 2.5%-8.0%. The Fe3O4 content in the slag has been estimated to be the most important factor, among others, influencing the separation of slag with matte and, consequently, the copper loss from the slag.