期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
1
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process 被引量:13
2
作者 YU Hao KANG Yong-lin +1 位作者 ZHAO Zheng-zhi SUN Hao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期30-36,共7页
The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscop... The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed. 展开更多
关键词 MORPHOLOGY thin slab continuous casting precipitation kinetics compact strip production TEM
在线阅读 下载PDF
Characteristic Parameters for Dendritic Microstructure of Solidification During Slab Continuous Casting 被引量:3
3
作者 GUO Wei ZHU Miao-yong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期17-21,共5页
The operating conditions during the continuous casting process have a great effect on the microstructure of slab solidification, including primary and secondary dendritic arm spacing. On the basis of the analysis of a... The operating conditions during the continuous casting process have a great effect on the microstructure of slab solidification, including primary and secondary dendritic arm spacing. On the basis of the analysis of available work, a revised expression for describing secondary dendritic arm spacing during solidification of slab continuous casting was presented, and the relation between the ratio of primary dendritic arm spacing to secondary dendritic arm spacing and the cooling rate was obtained. 展开更多
关键词 slab continuous casting dendritic solidification MICROSTRUCTURE dendritic arm spacing
原文传递
Effect of cooling structure on thermal behavior of copper plates of slab continuous casting mold 被引量:2
4
作者 孟祥宁 朱苗勇 《Journal of Central South University》 SCIE EI CAS 2013年第2期318-325,共8页
A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of... A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature. 展开更多
关键词 slab continuous casting MOLD copper plate cooling structure thermal behavior finite element analysis
在线阅读 下载PDF
Flow and Temperature Fields in Slab Continuous Casting Molds 被引量:1
5
作者 Yin Zhang Liguo Cao +2 位作者 Youduo He Shiqi Li Yishen Shen(Institute of Metallurgical Engineering, Baotou University of Iron & Steel Technology Baotou 014010, China)(Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第2期103-106,共4页
In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab spee... In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab speed, design of nozzles, and superheat tempera-ture. The results showed that it is preferred to incline nozzle bores downwards and the submerged depth of the nozzles is best kept be-tween 250-300 mm. In addition, the solidified shell is thicker at the wide face than that at the narrow face, while the thin points alongthe wide face ekist both in the center and in the some area toward each respective end. 展开更多
关键词 slab continuous casting mold flow field temperature field mathematical model
在线阅读 下载PDF
Modeling of unsteadiness of fluid flows and level fluctuations in thin slab continuous casting moulds 被引量:1
6
作者 ZHANG Huanxin WANG Lei LIU Baicheng 《Baosteel Technical Research》 CAS 2010年第3期49-52,共4页
Unsteady fluid flows and level fluctuations in a thin slab continuous casting mould have significant influence on product quality. In this study, the phenomena concerning transient flow features and free surface motio... Unsteady fluid flows and level fluctuations in a thin slab continuous casting mould have significant influence on product quality. In this study, the phenomena concerning transient flow features and free surface motions were analyzed by means of the large eddy simulation (LES) software with the smagorinsky SGS model--VisualCast (VCast) II, where the Simpler algorithm on a body-fitted mesh was used to resolve governing equations. A series of water analog experiments on the fluid flow and the surface wave in the moulds of thin slab continuous casting were also performed. The results of fluid regions, middle of vortex and level fluctuation from digital simulations were identical with the results of the water analog experiments. 展开更多
关键词 thin slab continuous casting mould flow level fluctuation mathematical simulation water analog experiment
在线阅读 下载PDF
Numerical simulation of EMS position on flow, solidification and inclusion capture in slab continuous casting
7
作者 Hai-biao Lu Yun-bo Zhong +3 位作者 Zhong-ming Ren Wei-li Ren Chang-gui Cheng Zuo-sheng Lei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第11期1807-1822,共16页
Electromagnetic stirring(EMS)is a well-known and widely used technology for controlling the fluid flow in continuous casting mold,and therein the selection of stirrer position is closely related to final product.To in... Electromagnetic stirring(EMS)is a well-known and widely used technology for controlling the fluid flow in continuous casting mold,and therein the selection of stirrer position is closely related to final product.To investigate the effect of stirrer position on initial solidification and inclusion capturing,a mathematical model coupling with electromagnetic field,turbulence flow,solidification,and inclusion movement was constructed.Through comparing the magnetic flux density,flow field and solidified shell thickness with measured data,the reliability of the mathematical model was proved.The uniform index has been introduced to judge the uniformity of solidified shell,and the washing effects of EMS on the numbers and distribution of captured inclusions were discussed.The results show that a diagonal jet flow toward the mold wide face has generated when EMS is applied,and upper EMS position can effectively improve the uniformity of temperature and the solidified shell within the mold.Meanwhile,due to the washing effect of EMS,the number of inclusions inside the solidified shell decreases,and the distribution of captured inclusions along the mold width changes evenly.Decreasing the stirrer position,the uniform index decreases firstly and then increases,and the probability of inclusion capture by solidified shell increases.Thus,the upper stirrer position is suggested,with which the uniformity of solidified shell and cleanliness of slab are rational. 展开更多
关键词 slab continuous casting EMS position FLOW Heat transfer Uniform index Solidified shell Inclusion capture
原文传递
Large eddy simulation of transient transport and entrapment of particle during slab continuous casting
8
作者 Yan-bin Yin Jiong-ming Zhang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第2期247-262,共16页
To investigate the transient transport and entrapment of argon bubbles and inclusions simultaneously during continuous casting,a 3D large eddy simulation model coupling molten steel flow,solidification and particle mo... To investigate the transient transport and entrapment of argon bubbles and inclusions simultaneously during continuous casting,a 3D large eddy simulation model coupling molten steel flow,solidification and particle motion was constructed.In this model,momentum transfer between molten steel and argon bubbles was performed by two-way coupling.The predicted results indicate that argon bubble injection changed the flow pattern of molten steel and the inclusion motion in the liquid pool.Consequently,the inclusion capture near the solidifying front was changed.In addition,measurements of bubbles and inclusions in the obtained samples were performed by methods of optical microscope examination and galvanostatic electrolysis.The results show a favorable agreement between the model predictions and the measured results,which validate the mathematical model.Furthermore,the predicted results of the inclusion entrapment in the case with argon bubble injection are more compatible with the measurements than those in the case without argon bubble injection. 展开更多
关键词 Large eddy simulation slab continuous casting Flow SOLIDIFICATION Argon bubble injection Particle motion Particle entrapment
原文传递
Numerical simulation of fluid flows in a slab continuous casting mold under electromagnetic stirring
9
作者 JIN Xiaoli ZHOU Yueming LEI Zuosheng 《Baosteel Technical Research》 CAS 2016年第1期10-15,共6页
This study established a three-dimensional mathematical model to determine the fluid flow in a slab continuous casting mold under an electromagnetic stirring force. The flow structure and distribution were studied wit... This study established a three-dimensional mathematical model to determine the fluid flow in a slab continuous casting mold under an electromagnetic stirring force. The flow structure and distribution were studied with respect to different continuous casting parameters and stirring current. Based on the calculation results, the mold flux entrapment index in free surface and velocity uniformity index were used to evaluate the flow field in the mold. The theoretical basis for the optimization of the flow field structure was provided. The study also suggested an optimization method for electromagnetic stirring parameters. 展开更多
关键词 slab continuous casting fluid flow electromagnetic stirring continuous casting parameter optimization
在线阅读 下载PDF
Simulation of thermal behavior during peritectic steel solidification in slab continuous casting mold
10
作者 ZHU Miaoyong and CAI Zhaozhen School of Materials and Metallurgy,Northeastern University,Shenyang 110004,China 《Baosteel Technical Research》 CAS 2010年第S1期26-,共1页
Thermal behavior of the solidifying shell in continuous casting mold is very important to final steel products.In the present work,one two-dimension transient thermal-mechanical finite element model was developed to s... Thermal behavior of the solidifying shell in continuous casting mold is very important to final steel products.In the present work,one two-dimension transient thermal-mechanical finite element model was developed to simulate the thermal behavior of peritectic steel solidifying in slab continuous casting mold by using the sequential coupling method.In this model,the steel physical properties at high temperature was gotten from the micro-segregation model withδ/γtransformation in mushy zone,and the heat flux was obtained according to the displacement between the surface of solidifying shell and the hot face of mold as solidification contraction,the liquid-solid structure and distribution of mold flux,and the temperature distribution of slab surface and mold hot face,in addition,the rate-dependent elastic-viscoplastic constitutive equation was applied to account for the evolution of shell stress in the mold.With this model,the variation characteristics of surface temperature,heat flux, and growth of the solidifying shell corner,as well as the thickness distribution of the liquid flux,solidified flux,air gap and the corresponding thermal resistance were described. 展开更多
关键词 slab continuous casting MOLD peritectic steel thermal behavior
在线阅读 下载PDF
Physical modeling and numerical simulation of electromagnetic stirring in a slab continuous casting mold
11
作者 LI Bin LEI Zuosheng +6 位作者 GE Jiangmeng ZHONG Yunbo REN Zhongming ZHOU Yueming WU Cunyou JIN Xiaoli WEI Rujun 《Baosteel Technical Research》 CAS 2016年第1期3-9,共7页
Through physical modeling and numerical simulation,the flow field in a slab continuous casting mold with electromagnetic stirring is measured under different casting parameters and stirring currents. To qualitatively ... Through physical modeling and numerical simulation,the flow field in a slab continuous casting mold with electromagnetic stirring is measured under different casting parameters and stirring currents. To qualitatively evaluate the flow field in the mold, two indexes,i, e., mold flux entrapment and velocity uniformity, are proposed. Based on these two indexes, some optimized stirring parameters under different casting conditions can be determined. 展开更多
关键词 slab continuous casting mold electromagnetic stirring optimized parameters
在线阅读 下载PDF
Study on Flow in Mold With EMBr in Slab Continuous Casting 被引量:2
12
作者 JIA Hao ZHANG Zhen-qiang +2 位作者 CHANG Tong-xu Deng Kang REN Zhong-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期1001-1005,共5页
A mercury model has been developed to investigate the influences of Electromagnetic Mold Brake Ruler(EMBr-Ruler) and Flow Control Mold(FC Mold) on metal flow in slab continuous casting mold with the practical casting ... A mercury model has been developed to investigate the influences of Electromagnetic Mold Brake Ruler(EMBr-Ruler) and Flow Control Mold(FC Mold) on metal flow in slab continuous casting mold with the practical casting speed 1.0,1.3 and 2.0 m/min respectively.FC-Mold can efficiently repress the surface flow and its fluctuation.The expanding space of the jets is compressed by EMBr-Ruler and FC-Mold respectively,then the 'flow passage' where the vertical velocity of flow increases sharply is developed near the narrow wall with EMBr-Ruler and FC-Mold.It is bad for the development of the plug like flow.Only the nozzle ports are placed in the braking magnetic field region and the casting speed is suitable,EMBr can be beneficial to the formation of the plug like flow.The flow regime is improved with FC Mold when the casting speed is high(2.0 m/min),but EMBr can improve the flow field with medium casting speed(1.3 m/min),but when the casting speed is low(1.0 m/min),the effects of two types of EMBr are both unsatisfactory. 展开更多
关键词 continuous casting of slab MOLD flow field EMBr physical simulation
原文传递
Grain growth kinetics model of high-temperature ferrite and austenite in Ti microalloyed steel during continuous casting
13
作者 Tianci Chen Cheng Ji +2 位作者 Jianhua Yang Yunguang Chi Miaoyong Zhu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1390-1403,共14页
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model... The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%. 展开更多
关键词 Ti microalloyed steel slab continuous casting phase transfer Ti carbonitrides austenite growth kinetics
在线阅读 下载PDF
Flow field control within slab mold under different casting speeds by electromagnetic swirling flow in nozzle
14
作者 Xian-cun Liu Xiao-wei Zhu +4 位作者 Yan-wen Sun Mei-jia Sun Li-jia Zhao Xiao-ming Liu Qiang Wang 《Journal of Iron and Steel Research International》 2025年第10期3342-3354,共13页
Controlling molten steel flow in the mold and stabilizing the meniscus are critical challenges during the continuous casting,directly impacting the surface quality and internal quality of the final steel slab product.... Controlling molten steel flow in the mold and stabilizing the meniscus are critical challenges during the continuous casting,directly impacting the surface quality and internal quality of the final steel slab product.The effects of electromagnetic swirling flow in nozzle(EMSFN)technology on molten steel flow in the mold during slab continuous casting under various casting speeds were investigated.A real-time adjustable EMSFN was developed,and a three-dimensional unsteady Reynolds-averaged Navier–Stokes turbulence mathematical model was established to simulate the flow field within the mold.The results demonstrate that the EMSFN effectively stabilizes the outflow from nozzle,reduces the impact depth and surface velocity of the molten steel,mitigates meniscus fluctuations,and promotes stable flow within the mold.However,a certain matching relationship exists between the casting speed and the current intensity.For the experimental medium-thick slab specifications,the optimal current intensities were found to be 100,130,and 200 A at casting speeds of 1.0,1.5,and 2.0 m/min,respectively.EMSFN can optimize the mold flow field under different casting speeds,providing theoretical support for improving the quality of continuously cast slab products. 展开更多
关键词 slab continuous casting Electromagnetic metallurgy Electromagnetic swirling flow in nozzle Mold flow field STEELMAKING
原文传递
Generalized constructal optimization for the secondary cooling process of slab continuous casting based on entransy theory 被引量:14
15
作者 FENG HuiJun CHEN LinGen +2 位作者 XIE ZhiHui DING ZeMin SUN FengRui 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期784-795,共12页
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary coolin... Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting. 展开更多
关键词 slab continuous casting solidification heat transfer entransy dissipation complex function generalized constructal op- timization generalized thermodynamic optimization
原文传递
Surface Detection of Continuous Casting Slabs Based on Curvelet Transform and Kernel Locality Preserving Projections 被引量:19
16
作者 AI Yong-hao XU Ke 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第5期80-86,共7页
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog... Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%. 展开更多
关键词 surface detection continuous casting slab Curvelet transform feature extraction kernel locality preserving projections
原文传递
Longitudinal crack on slab surface at straightening stage during continuous casting using finite element method 被引量:5
17
作者 喻海良 刘相华 《Journal of Central South University》 SCIE EI CAS 2010年第2期235-238,共4页
Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its c... Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry. 展开更多
关键词 continuous casting slab STRAIGHTENING longitudinal crack finite element method
在线阅读 下载PDF
Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab 被引量:4
18
作者 Qiang Ren Yuexin Zhang +3 位作者 Ying Ren Lifeng Zhang Jujin Wang Yadong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第2期147-158,共12页
In the current study, the transformation in the composition of non-metallic inclusions from the molten steel to the solidified steel was studied and the composition distribution of inclusions on the cross section of a... In the current study, the transformation in the composition of non-metallic inclusions from the molten steel to the solidified steel was studied and the composition distribution of inclusions on the cross section of a linepine continuous casting slab was predicted. During cooling and solidification of the continuous casting strand, Al_(2)O_(3)-CaO inclusions reacted with the bulk steel and transformed to CaS-Al_(2)O_(3)-MgO-(CaO) ones in the continuous casting slab. The composition of inclusions on the cross section of the slab varied with locations due to the varied cooling rate. A model was established to predict the distribution of the composition of inclusions on the cross section of the continuous casting slab, coupling solidification and heat transfer of the continuous casting slab, the kinetic mass transfer of the dissolved elements in the solid steel, and thermodynamic calculation of inclusion transformation at different temperatures. The composition transformation of inclusions mainly occurred at the temperature between the liquidus and solidus of the linepipe steel. Inclusions were mainly CaS-Al_(2)O_(3)-MgO-(CaO) in slab center and were MgO-Al_(2)O_(3)-CaO-CaS within the subsurface of the slab. In the slab, the transformation fraction of inclusions was less than 10 % at corners while it reached 70 % at 50 mm below the surface of the slab. 展开更多
关键词 INCLUSIONS Linepipe steel continuous casting slab Mass transfer THERMODYNAMICS KINETICS
原文传递
Correlation between longitudinal crack occurrence and mold heat transfer in continuous casting based on process data mining
19
作者 Zhi-qiang Peng Zi-bing Hou +3 位作者 Kai Yi Kun-hui Guo Dong-wei Guo Guang-hua Wen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第5期1139-1152,共14页
The correlation between the longitudinal crack occurrence and integrated heat transfer of the mold with data mining methods was investigated.Firstly,three kinds of support vector machine models based on principal comp... The correlation between the longitudinal crack occurrence and integrated heat transfer of the mold with data mining methods was investigated.Firstly,three kinds of support vector machine models based on principal component analysis with different input features were established to explore the effect of integrated heat transfer on the accuracy of the prediction model for the longitudinal crack.The results show that the accuracy was improved while features including mean and standard deviation of integrated heat transfer were added.Then,the difference in integrated heat transfer between defect and normal samples under the same process parameters was quantitatively compared.Compared with normal samples,the temperature difference of cooling water for defect samples decreased by 0.65%,and the temperature difference fluctuation increased by 31.1%.Finally,the literature data were used to provide support for the quantitative correlation according to defect formation mechanism.A new criterion for the prediction of longitudinal crack and a discovering method for correlation between product quality and process parameters in the manufacturing industry have been provided. 展开更多
关键词 continuous casting slab Longitudinal surface crack Heat transfer Data mining Quantitative correlation
原文传递
Strain in solidifying shell of continuous casting slabs 被引量:3
20
作者 Guosen Zhu, Xinhua Wang, Huixiang Yu, and Wanjun WangMetallurgical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第6期26-29,共4页
Two-dimension unsteady heat transfer model was applied to obtain the surfacetemperature and the shell thickness of continuous casting slabs during the process ofsolidification. On the basis of which, the mathematical ... Two-dimension unsteady heat transfer model was applied to obtain the surfacetemperature and the shell thickness of continuous casting slabs during the process ofsolidification. On the basis of which, the mathematical model of strain at the interface of solidand liquid steel was set up. Through which, the strain in the solidifying shell under normal andabnormal operation conditions was gained. The results indicate that the strain is small under thenormal operation conditions and the internal crack never happens. However, when the variation of theroll gap is above 2 mm, the strain caused by which is greater than that caused by bulging.Furthermore, the total strain exceeds the critical one and the internal crack is the result. So itis of great importance to maintain the fine state of continuous casting machine to avoid theappearance of internal crack. 展开更多
关键词 internal crack STRAIN BULGING unbending continuous casting slab
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部