Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply p...Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.展开更多
In this review, the research progress of bio-inspired polarized skylight navigation is evaluated from the perspectives of theoretical basis, information detection, sensor design, and navigation realization. First, the...In this review, the research progress of bio-inspired polarized skylight navigation is evaluated from the perspectives of theoretical basis, information detection, sensor design, and navigation realization. First, the theory for characterizing the polarization mode of the skylight was introduced. Second, using sunlight, moonlight, and ocean as backgrounds, the measurement results of skylight polarization distribution under different weather conditions are described to compare the variation patterns. Third, the development history and research outcomes of bionic polarization navigation sensor for polarized skylight detection and navigation information calculation are categorized into two types, namely non-imaging and imaging types. In precision measurement, the non-imaging type is higher than the imaging type, and the accuracy that it can reach is ± 0.1° of navigation accuracy without drift error. Fourth, two polarized skylight orientation algorithms,E-vector-based method and Solar Meridian-Anti Solar Meridian(SM-ASM)-based method are summarized. Fifth, this review details the combined application of polarized skylight navigation sensors and Inertial Navigation System(INS), Global Navigation Satellite System(GNSS), Vision,Simultaneous Localization and Mapping(SLAM), and other navigation systems. The yaw and trajectory accuracy can be increased by about 40% compared to classical navigation system in complex outdoor environments. Finally, the future development trends of polarization navigation are presented.展开更多
The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could a...The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could act as a radiative cooler or as a thermal insulator depending on the need. This versatile usage would thus decrease the need for traditional air-conditioning and hence save electricity. The skylight would consist of one normal silica glass window and of two polymer windows with a grcenhousc gas trapped in the spaces between the windows. The skylight would be in its cooling mode when the two spaces would be connected to each other and insulating when disconnected. Thus when cooling, a natural convective flow transports heat from the 1o~ er part of the skylight to the upper part of the skylight where the greenhouse gas is cooled by radiative heat exchange with the sky.展开更多
文摘Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.
基金This study was co-supported by the Natural Science Foundation of Shandong Province,China(No.ZR2022MF315)the National Natural Science Foundation of China(Nos.61471224 and 61801270).
文摘In this review, the research progress of bio-inspired polarized skylight navigation is evaluated from the perspectives of theoretical basis, information detection, sensor design, and navigation realization. First, the theory for characterizing the polarization mode of the skylight was introduced. Second, using sunlight, moonlight, and ocean as backgrounds, the measurement results of skylight polarization distribution under different weather conditions are described to compare the variation patterns. Third, the development history and research outcomes of bionic polarization navigation sensor for polarized skylight detection and navigation information calculation are categorized into two types, namely non-imaging and imaging types. In precision measurement, the non-imaging type is higher than the imaging type, and the accuracy that it can reach is ± 0.1° of navigation accuracy without drift error. Fourth, two polarized skylight orientation algorithms,E-vector-based method and Solar Meridian-Anti Solar Meridian(SM-ASM)-based method are summarized. Fifth, this review details the combined application of polarized skylight navigation sensors and Inertial Navigation System(INS), Global Navigation Satellite System(GNSS), Vision,Simultaneous Localization and Mapping(SLAM), and other navigation systems. The yaw and trajectory accuracy can be increased by about 40% compared to classical navigation system in complex outdoor environments. Finally, the future development trends of polarization navigation are presented.
文摘The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could act as a radiative cooler or as a thermal insulator depending on the need. This versatile usage would thus decrease the need for traditional air-conditioning and hence save electricity. The skylight would consist of one normal silica glass window and of two polymer windows with a grcenhousc gas trapped in the spaces between the windows. The skylight would be in its cooling mode when the two spaces would be connected to each other and insulating when disconnected. Thus when cooling, a natural convective flow transports heat from the 1o~ er part of the skylight to the upper part of the skylight where the greenhouse gas is cooled by radiative heat exchange with the sky.