期刊文献+
共找到174篇文章
< 1 2 9 >
每页显示 20 50 100
Joint modelling of location and scale parameters of the skew-normal distribution 被引量:2
1
作者 LI Hui-qiong WU Liu-cang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期265-272,共8页
Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcom... Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcomes. This paper focuses on the maximum likelihood estimation of joint location and scale models of the skew-normal distribution. The proposed procedure can simultaneously estimate parameters in the location model and the scale model. Simulation studies and a real example are used to illustrate the proposed methodologies. 展开更多
关键词 joint mean and variance models of the normal distribution joint location and scale models ofthe skew-normal distribution maximum likelihood estimators skew-normal distribution.
在线阅读 下载PDF
A parametric bootstrap approach for one-way classification model with skew-normal random effects 被引量:3
2
作者 YE Ren-dao XU Li-jun +1 位作者 LUO Kun JIANG Ling 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期423-435,共13页
In this paper,several properties of one-way classification model with skew-normal random effects are obtained,such as moment generating function,density function and noncentral skew chi-square distribution,etc.Based o... In this paper,several properties of one-way classification model with skew-normal random effects are obtained,such as moment generating function,density function and noncentral skew chi-square distribution,etc.Based on the EM algorithm,we discuss the maximum likelihood(ML)estimation of unknown parameters.For testing problem of fixed effect,a parametric bootstrap(PB)approach is developed.Finally,some simulation results on the Type I error rates and powers of the PB approach are obtained,which show that the PB approach provides satisfactory performances on the Type I error rates and powers,even for small samples.For illustration,our main results are applied to a real data problem. 展开更多
关键词 PARAMETRIC BOOTSTRAP EM algorithm one-way classification model skew-normal DISTRIBUTION SKEW CHI-SQUARE DISTRIBUTION
在线阅读 下载PDF
Mapping of quantitative trait loci using the skew-normal distribution 被引量:3
3
作者 FERNANDES Elisabete PACHECO António PENHA-GONALVES Carlos 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第11期792-801,共10页
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use th... In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM. 展开更多
关键词 Interval mapping (IM) Quantitative trait loci (QTL) skew-normal distribution Expectation-maximization (EM)algorithm
在线阅读 下载PDF
Bootstrap inference of the skew-normal two-way classification random effects model with interaction
4
作者 YE Ren-dao AN Na +1 位作者 LUO Kun LIN Ya 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第3期435-452,共18页
In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test stati... In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness. 展开更多
关键词 skew-normal two-way classification random effects model with interaction fixed effect variance component functions BOOTSTRAP generalized approach
在线阅读 下载PDF
Variable selection for skew-normal mixture of joint location and scale models
5
作者 WU Liu-cang YANG Song-qin TAO Ye 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第4期475-491,共17页
Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of ... Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of the variance parameter.In this paper,we propose and study a novel class of models:a skew-normal mixture of joint location and scale models to analyze the heteroscedastic skew-normal data coming from a heterogeneous population.The problem of variable selection for the proposed models is considered.In particular,a modi ed Expectation-Maximization(EM)algorithm for estimating the model parameters is developed.The consistency and the oracle property of the penalized estimators is established.Simulation studies are conducted to investigate the nite sample performance of the proposed methodolo-gies.An example is illustrated by the proposed methodologies. 展开更多
关键词 heterogeneous population skew-normal(SN)distribution mixture of joint location and scale models variable selection EM algorithm
在线阅读 下载PDF
Bayesian Inference of Spatially Correlated Binary Data Using Skew-Normal Latent Variables with Application in Tooth Caries Analysis
6
作者 Solaiman Afroughi 《Open Journal of Statistics》 2015年第2期127-139,共13页
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog... The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data. 展开更多
关键词 Spatial Data LATENT Variable Autologistic Model skew-normal Distribution BAYESIAN INFERENCE TOOTH CARIES
暂未订购
Variable Selection in Joint Location, Scale and Skewness Models of the Skew-Normal Distribution 被引量:3
7
作者 LI Huiqiong WU Liucang MA Ting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期694-709,共16页
Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, va... Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, variance and skewness models. In this paper, the authors propose the joint location, scale and skewness models when the data set under consideration involves asymmetric outcomes,and consider the problem of variable selection for our proposed models. Based on an efficient unified penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. The authors develop the variable selection procedure for the proposed joint models, which can efficiently simultaneously estimate and select important variables in location model, scale model and skewness model. Simulation studies and body mass index data analysis are presented to illustrate the proposed methods. 展开更多
关键词 Joint location scale and skewness models penalized maximum likelihood estimation skew-normal distribution variable selection.
原文传递
The ANOVA-Type Inference in Linear Mixed Model with Skew-Normal Error 被引量:1
8
作者 WU Mixia ZHAO Jing +1 位作者 WANG Tonghui ZHAO Yan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期710-720,共11页
Linear mixed effect models with skew-normal errors and distribution-free random effects are considered. The ANOVA-type F-tests are proposed to test the significance of random effects and the hypothesis on fixed effect... Linear mixed effect models with skew-normal errors and distribution-free random effects are considered. The ANOVA-type F-tests are proposed to test the significance of random effects and the hypothesis on fixed effects of interest, respectively. Both tests are proved to be exact F-tests under this model, and the exact confidence interval for fixed effects of interest is derived. Simulation results are given to study the powers of ANOVA-type tests. 展开更多
关键词 ANOVA-type estimator ANOVA-type F-test skew-normal error.
原文传递
Variable selection in finite mixture of median regression models using skew-normal distribution
9
作者 Xin Zeng Yuanyuan Ju Liucang Wu 《Statistical Theory and Related Fields》 CSCD 2023年第1期30-48,共19页
A regression model with skew-normal errors provides a useful extension for traditional normal regression models when the data involve asymmetric outcomes.Moreover,data that arise from a heterogeneous population can be... A regression model with skew-normal errors provides a useful extension for traditional normal regression models when the data involve asymmetric outcomes.Moreover,data that arise from a heterogeneous population can be efficiently analysed by a finite mixture of regression models.These observations motivate us to propose a novel finite mixture of median regression model based on a mixture of the skew-normal distributions to explore asymmetrical data from several subpopulations.With the appropriate choice of the tuning parameters,we establish the theoretical properties of the proposed procedure,including consistency for variable selection method and the oracle property in estimation.A productive nonparametric clustering method is applied to select the number of components,and an efficient EM algorithm for numerical computations is developed.Simulation studies and a real data set are used to illustrate the performance of the proposed methodologies. 展开更多
关键词 Variable selection mixture of median regression skew-normal distribution heterogeneous population EM algorithm
原文传递
An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings
10
作者 Tong Pu Narayanaswamy Balakrishnan Chuancun Yin 《Communications in Mathematics and Statistics》 SCIE CSCD 2023年第3期629-647,共19页
We establish an identity for E f(Y)-E f(X),when X and Y both have matrix variate skew-normal distributions and the function f satisfies some weak conditions.The characteristic function of matrix variate skew normal dis... We establish an identity for E f(Y)-E f(X),when X and Y both have matrix variate skew-normal distributions and the function f satisfies some weak conditions.The characteristic function of matrix variate skew normal distribution is then derived.We then make use of it to derive some necessary and sufficient conditions for the comparison of matrix variate skew-normal distributions under six different orders,such as usual stochastic order,convex order,increasing convex order,upper orthant order,directionally convex order and supermodular order. 展开更多
关键词 Characteristic function Integral order Matrix variate skew-normal distributions Stochastic comparisons
原文传递
天然气水合物降压分解特性与预测模型研究
11
作者 杨明军 李静 +1 位作者 郑嘉男 宋永臣 《工程热物理学报》 北大核心 2025年第5期1417-1421,共5页
开发天然气水合物是海洋能源发展的必由之路,但当前水合物降压开采研究尚未形成系统完善的理论体系,以致大规模商业开采的理论验证工作缺少关键的理论模型依据。本研究通过实验研究理清了天然气水合物的降压开采特性,结合多孔介质内水... 开发天然气水合物是海洋能源发展的必由之路,但当前水合物降压开采研究尚未形成系统完善的理论体系,以致大规模商业开采的理论验证工作缺少关键的理论模型依据。本研究通过实验研究理清了天然气水合物的降压开采特性,结合多孔介质内水合物赋存分布实际建立水合物分解颗粒数决定分解速度的假说,在此基础上构建了水合物偏正态分解气量模型,进而提出完整的水合物降压开采非平衡热动力学计算方法,实现了水合物降压分解全过程温度、压力、反应等多参数动态响应的高精度预测。研究结果有力弥补了当前水合物理论的不足,对天然气水合物开采方案优化具有重要指导意义。 展开更多
关键词 天然气水合物 降压开采 偏正态分解模型 非平衡热力学模型
原文传递
小样本偏态数据下线性回归模型的统计推断 被引量:1
12
作者 黄明贺 肖松涛 +1 位作者 欧阳应根 李志强 《北京化工大学学报(自然科学版)》 北大核心 2025年第3期132-138,共7页
在小样本实验观测数据下,指标变量间的严重多重共线性和模型误差分布的非对称性会导致无法准确地构建适合的统计模型。在误差服从偏正态分布的假定下,为了克服误差分布的尺度参数和偏度参数的估计值不准确对线性回归模型统计推断产生的... 在小样本实验观测数据下,指标变量间的严重多重共线性和模型误差分布的非对称性会导致无法准确地构建适合的统计模型。在误差服从偏正态分布的假定下,为了克服误差分布的尺度参数和偏度参数的估计值不准确对线性回归模型统计推断产生的影响,基于小样本数据,提出一种利用敏感性分析的方法,可以比较准确地估计模型误差分布的尺度参数和偏度参数。在得到误差分布的参数估计值后,能够对具有严重多重共线性的线性回归模型进行有效地统计推断。首先采用贝叶斯回归结合马尔科夫链蒙特卡洛(MCMC)方法估计模型系数,然后通过后验区间估计进行指标变量筛选,模拟结果表明本文方法能够有效地筛选出最终模型,为具有多重共线性的小样本偏态数据下的线性回归模型的统计推断提供了有价值的替代方案。最后应用所提方法构建了冠醚分子量化参数与铜同位素分馏系数之间的定量构效关系模型。 展开更多
关键词 偏正态分布 线性回归模型 敏感性分析 贝叶斯回归 模型选择
在线阅读 下载PDF
区间数据偏度系数的估计
13
作者 赵志文 臧嘉琦 《佳木斯大学学报(自然科学版)》 2025年第9期175-177,共3页
文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度... 文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度系数的矩估计量,同时证明了该估计量的相合性和渐近正态性.为验证所提方法的有效性,设计了蒙特卡洛模拟实验,利用Matlab生成不同分布下的区间数据,研究结果表明,该估计量具有较小的均方误差. 展开更多
关键词 区间数据 偏度系数 矩估计 渐近正态性
在线阅读 下载PDF
基于强稳定收敛的偏正态联合位置与尺度模型的参数估计算法
14
作者 薛潇 吴刘仓 《应用数学》 北大核心 2025年第1期201-210,共10页
传统的迭代算法(例如牛顿算法,EM算法等)在实际应用中,往往存在初始值较为敏感的问题.为解决这一问题,一种强稳定的收敛算法——Upper-crossing/Solution算法(以下称US算法)被提出,这种算法虽然在求解一元非线性函数时具有强稳定性,但... 传统的迭代算法(例如牛顿算法,EM算法等)在实际应用中,往往存在初始值较为敏感的问题.为解决这一问题,一种强稳定的收敛算法——Upper-crossing/Solution算法(以下称US算法)被提出,这种算法虽然在求解一元非线性函数时具有强稳定性,但是不能推广到多元的情形.那么针对多元情形,本文将结合偏正态分布的随机表示,对偏正态联合位置与尺度模型的似然函数进行分层,并且利用MM算法得到一元的情形,再使用US算法构造强稳定的收敛算法.最后通过随机模拟分析和实例分析研究表明了US算法较牛顿迭代法大大降低了算法对初值的敏感度以及显著地提高了收敛的稳定性. 展开更多
关键词 偏正态联合位置与尺度模型 牛顿迭代法 US算法 强稳定收敛
在线阅读 下载PDF
一类偏斜广义正态分布的统计推断
15
作者 杜扬 程维虎 《哈尔滨理工大学学报》 北大核心 2025年第5期145-158,共14页
构造了一类新型偏斜广义正态分布,其概率密度函数包含4个参数,其分布有卓越的灵活性,为实际统计数据分析提供了准确的模型。给出了分布的几个重要性质,在此基础上构造了分布参数的最优置信区间。通过仿真实验,验证了所构建置信区间的准... 构造了一类新型偏斜广义正态分布,其概率密度函数包含4个参数,其分布有卓越的灵活性,为实际统计数据分析提供了准确的模型。给出了分布的几个重要性质,在此基础上构造了分布参数的最优置信区间。通过仿真实验,验证了所构建置信区间的准确性和可靠性。此外,详细讨论了该分布的假设检验问题,包括功效函数的分析,评估了检验方法在各种情况下的性能,提出了最优的双边检验方法。所提出的新型分布及其统计分析方法可有效提高数据分析的质量。 展开更多
关键词 偏斜广义正态分布 最优区间估计 最佳双边假设检验 参数估计 功效函数
在线阅读 下载PDF
一种快速的全波形高光谱激光雷达的反射率光谱曲线重建方法
16
作者 邵慧 张胡龙 +4 位作者 戴慧 陈育伟 孙龙 徐恒 李幸运 《雷达学报(中英文)》 北大核心 2025年第3期602-615,共14页
全波形高光谱激光雷达(HSL)在获得高精度、高分辨率的空间数据的同时,还能获得目标的光谱信息,可为不同研究和应用领域提供有效和多维的数据。然而,HSL不同波段发射信号强度存在差异,会导致相应回波信号的差异,难以直接利用回波信号来... 全波形高光谱激光雷达(HSL)在获得高精度、高分辨率的空间数据的同时,还能获得目标的光谱信息,可为不同研究和应用领域提供有效和多维的数据。然而,HSL不同波段发射信号强度存在差异,会导致相应回波信号的差异,难以直接利用回波信号来重建目标在不同波段下准确的光学特性(目标的反射率光谱分布曲线)。以往研究通常利用标准漫反射白板法来获取目标的反射率光谱曲线(标准参照板法)。但在某些复杂的检测环境中白板易受污染,且激光器的发射能量会因环境和设备状态的变化出现波动,进而影响计算精度。因此,从全波形信号本身直接提取信息用于反射率光谱曲线重建是一种快捷的途径。基于此,该文提出一种基于HSL全波形数据的回波强度校正方法,用于快速生成目标的反射率光谱曲线。首先,通过理论分析,证明回波与发射波在形状上的相似性。然后,对HSL全波形的发射信号和回波信号进行偏正态高斯函数拟合,计算各波段在理想情况下标准漫反射白板的发射信号与回波信号峰值比值(归一化因子)。最后,通过结合标准漫反射白板的归一化因子与目标的归一化因子来构建目标的反射率光谱分布曲线。为验证方法的有效性,该文将其与基于标准漫反射板计算的反射率光谱曲线进行了对比实验,并进行木叶分离和目标分类实验以评估其适用性。实验结果表明:(1)利用发射信号校正回波强度,可以获得与标准参照板法相似的反射率光谱曲线。并且在不同温度及光照条件下均表现出良好的稳定性;与标准漫反射白板法相比,该方法有效克服了激光器发射能量波动的影响,尤其在HSL长时间工作条件下,显著提升了反射率光谱曲线的测量精度和一致性。(2)在实际应用中,基于该文方法获得的目标反射率光谱曲线能够快速实现木叶分离,且对果树目标分类准确率超过90%。该文方法简化了全波形高光谱激光雷达的回波强度校正流程,可在数据采集过程中实时快速重建目标高光谱信息。 展开更多
关键词 全波形 高光谱激光雷达 强度校正 反射率光谱曲线 归一化因子 发射信号 回波信号 偏正态高斯函数
在线阅读 下载PDF
我国金融状况指数的构建及经济风险的监测和预警研究
17
作者 肖强 魏蕊霞 《中央财经大学学报》 北大核心 2025年第10期57-73,共17页
在金融市场与实体经济深度融合的背景下,构建有效的经济风险监测预警指标,对维护金融市场稳定和促进经济高质量发展具有重要现实意义。本文首先利用包含金融文本情绪的数据,基于时变参数多层因子增强向量自回归(TVP-MFAVAR)模型构建我... 在金融市场与实体经济深度融合的背景下,构建有效的经济风险监测预警指标,对维护金融市场稳定和促进经济高质量发展具有重要现实意义。本文首先利用包含金融文本情绪的数据,基于时变参数多层因子增强向量自回归(TVP-MFAVAR)模型构建我国金融状况指数(FCI),进而将其纳入经济在险增长(GaR)研究框架,测度中国GaR,最后构建包含FCI的马尔科夫区制转移偏正态模型,辨识其对经济风险的预警信息。研究发现:第一,包含金融文本情绪的FCI能够更加及时、准确地反映金融市场时变特征,相较于传统FCI具有更强的前瞻性和稳定性。第二,基于金融市场视角测度的GaR,能够有效捕捉重大事件冲击下的经济风险动态演化特征。特别是在极端事件冲击下,金融市场对经济风险的影响显著增强。第三,我国经济增长的概率分布呈现高风险和低风险两个状态,且存在显著的“惯性”特征和“棘轮”效应。随着风险状态由高向低转移,经济增长预期提升,波动区间收窄,下行压力减小。第四,FCI对经济风险的预警能力具有状态依赖特征,在高风险区制下表现出更强的预警效果。本研究构建了一个基于金融市场视角的经济风险测度和预警新范式,为防范金融风险和维护宏观经济稳定提供了理论依据。 展开更多
关键词 FCI 经济在险增长 经济风险监测和预警 马尔科夫区制转移偏正态模型
在线阅读 下载PDF
一种基于偏正态混合模型的异质数据隐私算法
18
作者 邬伟三 王帝 《白城师范学院学报》 2025年第5期7-14,共8页
在大数据时代,每天都会产生海量数据,数据的结构越来越复杂,这对数据的隐私保护带来巨大挑战.多源异质数据常用混合正态模型进行参数估计,经典的正态分布假设在不规则数据中经常会产生较大的估计误差.文章利用偏正态分布作为混合模型的... 在大数据时代,每天都会产生海量数据,数据的结构越来越复杂,这对数据的隐私保护带来巨大挑战.多源异质数据常用混合正态模型进行参数估计,经典的正态分布假设在不规则数据中经常会产生较大的估计误差.文章利用偏正态分布作为混合模型的成分,克服数据的不对称性和重尾等不规则问题;借鉴掩码机制设计偏正态混合分布的差分隐私算法,不仅在理论上保证了数据的隐私,同时也证明了算法的运行时间复杂度和样本复杂度都是多项式的. 展开更多
关键词 偏正态分布 混合模型 差分隐私 掩码机制
在线阅读 下载PDF
偏正态单向分类随机效应模型下暴露水平的Bootstrap推断
19
作者 叶仁道 杨嘉楠 《工程数学学报》 CSCD 北大核心 2024年第6期1144-1154,共11页
为评估工作环境中的暴露水平,基于偏正态单向分类随机效应模型,研究暴露水平的区间估计和假设检验问题。首先,利用EM算法给出未知参数的极大似然估计。进而,基于Bootstrap方法,构造个体平均暴露水平的三种Bootstrap置信区间。Monte Carl... 为评估工作环境中的暴露水平,基于偏正态单向分类随机效应模型,研究暴露水平的区间估计和假设检验问题。首先,利用EM算法给出未知参数的极大似然估计。进而,基于Bootstrap方法,构造个体平均暴露水平的三种Bootstrap置信区间。Monte Carlo模拟结果表明,修正的Bootstrap百分位置信区间在覆盖概率意义下优于其他两种Bootstrap置信区间,Bootstrap标准置信区间在置信上限意义下优于其他两种Bootstrap置信区间。最后,将上述方法应用于苯乙烯暴露数据的案例分析,以验证所提出方法的有效性和合理性。 展开更多
关键词 偏正态单向分类随机效应模型 暴露水平 EM算法 Bootstrap置信区间
在线阅读 下载PDF
偏正态条件下多元线性回归模型的统计推断及其应用 被引量:5
20
作者 赵伟凯 杨兰军 +1 位作者 戴琳 吴刘仓 《应用数学》 北大核心 2024年第2期519-529,共11页
本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐... 本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐近性质,给出参数的渐近分布.最后通过数值模拟说明了所提理论和方法的有效性.实例表明模型参数估计的渐近分布具有实际意义. 展开更多
关键词 偏正态分布 多元线性模型 最大似然估计 渐近正态性
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部