The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The...The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The key to realizing this process lies in the multiple trapping of the in situ generated ketenimine cation by the 3-aminoindazole,which results in the formation of four new chemical bonds and two new rings in one pot.Moreover,the products of this new reaction were found to exhibit aggregationinduced emission(AIE)without modification.展开更多
The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and ...The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and CuZn mesh)frequently adopted in the stabilization of Li are evaluated at low temperatures.Li growth patterns and stripping behaviors on different skeletons and at different temperatures uncover the dendrite-free and dead-Li-less Li deposition/dissolution on CuZn mesh.Three-electrode impedance indicates the dynamic advantages of CuZn mesh,driving fast Li^(+)crossing through solidelectrolyte-interphase and charge transfer process.Notably,CuZn mesh enables the stable operation and fast charging(1.8 mA cm^(-2))of Li||LiFePO_(4)cells for over 120 cycles at-10℃ with a superior capacity retention of 88%.The success of CuZn mesh can be translated into lower temperature(-20℃)and 1.0-Ah-level pouch cells.This work provides fundamentals on improving low-temperature battery performances by skeletons with regulated spatial structure and lithiophilicity.展开更多
The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce ...The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce IMC-skeleton structures across the bonding region by initiating a localized liquid-solid interaction among micron particles at traditional soldering temperatures.The developed IMC skeletons can reinforce solder alloys and provide remarkable mechanical stability and electrical capabilities at high temperatures.As a result,the IMC-skeleton strengthened interconnections exhibited higher thermal/electrical conductivity,lower hardness and almost doubled strength than traditional full-IMC joints,attaining 87.4 MPa and 30.2 MPa at room condition and 350℃.Meanwhile,the necessary heating time to form metallurgical bonds was shortened,one-fifth of nano-sintering and one-tenth of TLP bonding,and the material cost was significantly reduced.This proposed technique enabled the fast,low-cost manufacturing of electronics that can serve at temperatures as high as 200−350℃.Besides,the interfacial reactions among particles and the correlated phase evolution process were studied in this research.The formation mechanism of IMC skeletons was analyzed.The correlated influencing factors and their effect on the mechanical,thermal and electrical properties of joints were revealed,which may help the design and extensive uses of such techniques in various high-temperature/power applications.展开更多
The skeletons of corals are made of calcium carbonate by biomineralization process, in the form of aragonite or calcite. To understand the characteristics of coral skeletons, especially mineralogy, crystal phases, org...The skeletons of corals are made of calcium carbonate by biomineralization process, in the form of aragonite or calcite. To understand the characteristics of coral skeletons, especially mineralogy, crystal phases, organization and structure in individual species, X-ray powder diffraction techniques have gained increased interest in recent years as useful non-destructive tools. This review provides an overview on the recent progress in this field and briefly introduces the related experimental approach. The application of X-ray diffraction (XRD) to elucidating the structural and mechanical properties of mineral crystals in corals is reviewed in terms of characterization of CaCO3 crystal orientation. In addition, we discuss how this technique has increased our understanding of the function of the organic matrix proteins of calcified coral skeletons during mineral formation. Such information is helpful in deducing the mechanical and structural model of corals with respect to biomineralization system of skeletons.展开更多
Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in...Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in China and provide the first example that an oospecies can be correlated to certain dinosaur taxon/taxa. The two eggs are the same as the pair of the eggs inside a female oviraptorosaurian pelvis from the same horizon of the same area in both macro- and micro-structures of the egg shells, and can he referred to the oospecies, Macroolithus yaotunensis Zhao, 1975. The morphology of the preserved part of the embryonic skeletons indicates that they may have been laid by an oviraptorid, Heyuannia huangi from Guangdong Province or a closely related oviraptorosaurian, which may have been lived in the Ganzhou area too in the Late Cretaceous. The embryonic skeletons of the two eggs are not in the same developing stage. In one of the eggs, the postzygapophysis of the preserved vertebrae are well ossified, indicating that it was just hatched.展开更多
Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research ...Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research relies heavily on intense manual labor and lacks standardized assessment.In this work,we established two standard benchmark datasets of NHPs in the laboratory:Monkeyin Lab(Mi L),which includes 13 categories of actions and postures,and MiL2D,which includes sequences of two-dimensional(2D)skeleton features.Furthermore,based on recent methodological advances in deep learning and skeleton visualization,we introduced the Monkey Monitor Kit(Mon Kit)toolbox for automatic action recognition,posture estimation,and identification of fine motor activity in monkeys.Using the datasets and Mon Kit,we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome(RTT).Mon Kit was used to assess motor function,stereotyped behaviors,and depressive phenotypes,with the outcomes compared with human manual detection.Mon Kit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency,thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys.展开更多
Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produ...Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies.展开更多
In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Ope...In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.展开更多
Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spir...Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.展开更多
An easy and mild way to construct 13-hydroxy-9,15-cyclo GA skeletons was reported and it could be used as a general protocol in the synthesis of GAs with this structure.
Motivated by the advancement of large language models,multiagent technology,and digital twins,digital skeletons are bringing new development opportunities in orthopedics.Data-driven deep learning(DL)network models can...Motivated by the advancement of large language models,multiagent technology,and digital twins,digital skeletons are bringing new development opportunities in orthopedics.Data-driven deep learning(DL)network models can effectively learn medical feature representations from multimodal and cross-scale datasets to accurately identify orthopedic diseases,making the most of the vast amount of medical imaging data and records collected over the years.Digital skeleton technology can be boosted by artificial intelligence(AI)to quickly and accurately identify common diseases and investigate the most difficult problems as researchers continue to integrate a wide range of DL techniques into orthopedic applications.展开更多
Rational design of single atom nanozymes(SAzymes)could be achieved through the accurate configuration regulation of metal coordination sites,nevertheless,the un-defined carbon environment of traditional SAzymes synthe...Rational design of single atom nanozymes(SAzymes)could be achieved through the accurate configuration regulation of metal coordination sites,nevertheless,the un-defined carbon environment of traditional SAzymes synthesized by high-temperature pyrolysis makes it difficult to unveil the influence of carbon skeletons with enzyme mimicking activities of SAzymes.Herein,we investigated the relationship between the carbon skeletons and the enzyme mimicking activities through the construction of a series of fullyπ-conjugated covalent organic polymer(COP)-based SAzymes with analogous Fe-N_(4)sites.The experimental results and theoretical calculations demonstrated that carbon skeletons bonded to the Fe-N_(4)catalytic sites strongly affect the enzyme mimicking activities of COP SAzymes.When the number of benzene rings in carbon skeletons was 1,the COP SAzyme possessed much more remarkable oxidase(OXD)and peroxidase(POD)mimicking activities,and further reducing or increasing the benzene rings would dramatically inhibit the enzyme mimicking activity.Additionally,the fantastic enzyme mimicking activity of COP-1 could be applied to colorimetric detection of biological molecules and degradation of pollutants.These results provide a new perspective for the rational fabrication of SAzymes with high catalytic efficiency.展开更多
Inspired by the natural corn structure,a Si@hollow graphene shell@graphene(Si@GS@G)anode material was prepared in which silicon nanoparticles were preliminarily anchored onto the surface of an elastic graphene shell a...Inspired by the natural corn structure,a Si@hollow graphene shell@graphene(Si@GS@G)anode material was prepared in which silicon nanoparticles were preliminarily anchored onto the surface of an elastic graphene shell and further constrained using graphene sheets.Hollow graphene oxide shells with abundant surficial hydrogen bonds,which were synthesized using a novel bottom-up method,were used as an intermediate material to anchor positively charged silicon nanoparticles via electrostatic attraction and achieve a rational spatial distribution.The inner hollow graphene shell anchorage and outer graphene constraint synergistically constituted a porous and robust conductive corn-like structure.The as-fabricated Si@GS@G anode afforded efficient electron and ion transport pathways and improved structural stability,thereby enhancing Li+storage capability(505 mAh·g^(−1)at 10 A·g^(−1))and extending the lifespan compared to the single hollow graphene shell or graphene sheet-protected Si anode(72%capacity retention after 500 cycles).The improved kinetics of the Si@GS@G anode were investigated using electro impedance spectroscopy,galvanostatic intermittent titration,and pseudocapacitance contribution rate analysis,and the structural evolution was analyzed using ex situ electron microscopy.This study proposes a novel hollow graphene oxide shell as an activated intermediate material for designing a porous electrode structure that facilitates an enhanced electrochemical performance.展开更多
Visible light photocatalytic redox catalysis has become a powerful tool for organic synthesis, and has opened up new avenues for the formation of challenging structural skeletons and chemical bonds. In this respect, d...Visible light photocatalytic redox catalysis has become a powerful tool for organic synthesis, and has opened up new avenues for the formation of challenging structural skeletons and chemical bonds. In this respect, diverse photocatalysts, including ruthenium(II), iridium(Ⅲ), and organic dyes, have been most commonly applied.展开更多
Nearly 200000 animal skeletons are unearthed in the Unit T0202 from Zhongba Site of Zhongxian County.According to the analysis of 129165 specimens,these skeletons may be classified into 5 kinds, namely,Mammalia,Osteic...Nearly 200000 animal skeletons are unearthed in the Unit T0202 from Zhongba Site of Zhongxian County.According to the analysis of 129165 specimens,these skeletons may be classified into 5 kinds, namely,Mammalia,Osteichthys,Aves,Amphibian and Reptilia,which belong to 13 orders,28 families and 42 genera.In this paper,based on archeological dating and AMS 14 C data,through statistically analyzing the unearthed skeletons and studying the change of the smallest individual numbers,these research results detected the following:1)In almost all the time of 2370―200 BC,in Zhongba region, some animals distributed widely,such as Muntiacus sp,Elaphodus cephalophus and Muntiacus sp. inhabiting in glade and grassland,Scrofa sp.and Canis familiaris raised by the ancient people,rodentia rabbit and Rattus rattus,which suggested that a fairly good ecological environment of forest and grassland was preserved at that period and the predecessors began to raise domestic animals from 1750 to 1000 BC,which has lasted until today.2)Rhinoceros only lived during 2000―1750 BC,1000― 700 BC and 700―500 BC,which indicates that the ecological environment of grassland and wetland might be better in these phases.3)Macaca sp.and Ursus arctos appeared only after 1750―1000 BC, which may show that the forest condition is better for animals to live during 1750―200 BC.4)The smallest individual numbers of Bublus sp.,bos sp.and otters emerged during about 2370―1750 BC, which perhaps infers that water area during the early period was wider than that of the late period.5) Since skeletons of rhinoceros are discovered in strata of Zhongba Site during 2000―1750 BC and 1000―500 BC,according to the climate and ecology environment which rhinoceros live in now,the average annual temperature and precipitation during 2000―1750 BC and 1000―500 BC are supposed to be probably higher than that of today.Although Zhu Kezhen considered that the first low temperature period in the past 5000 years of China was between 1100 BC and 850 BC,massive pollen of Morus, Ulmus,Fagus,Quercus,Castanea,etc.were found in Dajiuhu peat at that time,which should indicate that the climate was still moderate for living things to live at least in Dajiuhu basin and Zhongba Site.6) Because skeletons of Gervus albirostris were unearthed during 310―200 BC at Zhongba Site,based onthe climate and the ecological environment those animals live in now,the average annual temperature and the average annual precipitation in Zhongba area between 310 BC and 200 BC should be lower than those of today,which is confirmed by the TOC research of Zhongba Site strata.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s...Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.展开更多
As a natural alkaloid found extensively in cereal crops, gramine not only plays a crucial role in protecting barley and other grasses from various pests, but also reduces palatability for ruminants. Scientists are try...As a natural alkaloid found extensively in cereal crops, gramine not only plays a crucial role in protecting barley and other grasses from various pests, but also reduces palatability for ruminants. Scientists are trying to figure out how gramine gets into cereal plants: is it inherently present or transformed through a special process? The latest study published in Science by Sara Leite Dias and co-authors, provides a detailed explanation. The starting point of the transformation is identified, and the transformation process is confirmed through rigorous experiments.展开更多
Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The ...Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The two novel skeleton compounds(1 and 6)were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes,respectively.Their structures were elucidated through a comprehensive analysis of spectroscopic data,including high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.The absolute configurations were determined using electronic circular dichroism(ECD)spectra,single-crystal X-ray crystallographic analyses,time-dependent density functional theory(TDDFT)ECD calculation,density functional theory(DFT)NMR calculations,and biomimetic syntheses.The biomimetic syntheses of the two novel skeletons(1 and 6)were inspired by potential biogenetic pathways,utilizing a predominant eudesmane-type sesquiterpene(A)in A.hedinii as the substrate.All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity.Compounds 2,8,and 10 exhibited significant activity in downregulating the expression ofα-smooth muscle actin(α-SMA),a protein involved in hepatic fibrosis.展开更多
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金supported by the National Natural Science Foundation of China(Nos.21971080,22171098)supported by Chengdu Guibao Science&Technology Co.,Ltd.This work was also supported by the 111 Project(No.B17019)。
文摘The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The key to realizing this process lies in the multiple trapping of the in situ generated ketenimine cation by the 3-aminoindazole,which results in the formation of four new chemical bonds and two new rings in one pot.Moreover,the products of this new reaction were found to exhibit aggregationinduced emission(AIE)without modification.
基金the funding support of the National Natural Science Foundation of China(52103342,22209032 and 22479134)Natural Science Foundation of Zhejiang Province(LY24B030008)+1 种基金China Jiliang University Research Fund Program for Young Scholars(221040)the funding support of the Zhejiang Provincial College Students’Scientific Research and Innovation Activity(Xinmiao Talent)Program(2023R409A045)。
文摘The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and CuZn mesh)frequently adopted in the stabilization of Li are evaluated at low temperatures.Li growth patterns and stripping behaviors on different skeletons and at different temperatures uncover the dendrite-free and dead-Li-less Li deposition/dissolution on CuZn mesh.Three-electrode impedance indicates the dynamic advantages of CuZn mesh,driving fast Li^(+)crossing through solidelectrolyte-interphase and charge transfer process.Notably,CuZn mesh enables the stable operation and fast charging(1.8 mA cm^(-2))of Li||LiFePO_(4)cells for over 120 cycles at-10℃ with a superior capacity retention of 88%.The success of CuZn mesh can be translated into lower temperature(-20℃)and 1.0-Ah-level pouch cells.This work provides fundamentals on improving low-temperature battery performances by skeletons with regulated spatial structure and lithiophilicity.
基金the research grant of the National Natural Science Foundation of China(Grant No.52075125,No.52105331)The research was also partially supported by Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20210324124203009,No.JSGG20201102154600003,No.GXWD20220818163456002).
文摘The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce IMC-skeleton structures across the bonding region by initiating a localized liquid-solid interaction among micron particles at traditional soldering temperatures.The developed IMC skeletons can reinforce solder alloys and provide remarkable mechanical stability and electrical capabilities at high temperatures.As a result,the IMC-skeleton strengthened interconnections exhibited higher thermal/electrical conductivity,lower hardness and almost doubled strength than traditional full-IMC joints,attaining 87.4 MPa and 30.2 MPa at room condition and 350℃.Meanwhile,the necessary heating time to form metallurgical bonds was shortened,one-fifth of nano-sintering and one-tenth of TLP bonding,and the material cost was significantly reduced.This proposed technique enabled the fast,low-cost manufacturing of electronics that can serve at temperatures as high as 200−350℃.Besides,the interfacial reactions among particles and the correlated phase evolution process were studied in this research.The formation mechanism of IMC skeletons was analyzed.The correlated influencing factors and their effect on the mechanical,thermal and electrical properties of joints were revealed,which may help the design and extensive uses of such techniques in various high-temperature/power applications.
文摘The skeletons of corals are made of calcium carbonate by biomineralization process, in the form of aragonite or calcite. To understand the characteristics of coral skeletons, especially mineralogy, crystal phases, organization and structure in individual species, X-ray powder diffraction techniques have gained increased interest in recent years as useful non-destructive tools. This review provides an overview on the recent progress in this field and briefly introduces the related experimental approach. The application of X-ray diffraction (XRD) to elucidating the structural and mechanical properties of mineral crystals in corals is reviewed in terms of characterization of CaCO3 crystal orientation. In addition, we discuss how this technique has increased our understanding of the function of the organic matrix proteins of calcified coral skeletons during mineral formation. Such information is helpful in deducing the mechanical and structural model of corals with respect to biomineralization system of skeletons.
基金supported by research grants from the NMNS and the National Science Council of RO China(NSC 96-2116-M-178-001) to Cheng Y.-N.the Ministry of Land and Resources,the Ministry of Science and Technology(973 Project,2006CB701405) and China Geological Survey for supportsupported by the NMNS for his sabbatical stay and grants from Canadian Museum of Nature,Canada
文摘Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in China and provide the first example that an oospecies can be correlated to certain dinosaur taxon/taxa. The two eggs are the same as the pair of the eggs inside a female oviraptorosaurian pelvis from the same horizon of the same area in both macro- and micro-structures of the egg shells, and can he referred to the oospecies, Macroolithus yaotunensis Zhao, 1975. The morphology of the preserved part of the embryonic skeletons indicates that they may have been laid by an oviraptorid, Heyuannia huangi from Guangdong Province or a closely related oviraptorosaurian, which may have been lived in the Ganzhou area too in the Late Cretaceous. The embryonic skeletons of the two eggs are not in the same developing stage. In one of the eggs, the postzygapophysis of the preserved vertebrae are well ossified, indicating that it was just hatched.
基金supported by the National Key R&D Program of China (2021ZD0202805,2019YFA0709504,2021ZD0200900)National Defense Science and Technology Innovation Special Zone Spark Project (20-163-00-TS-009-152-01)+4 种基金National Natural Science Foundation of China (31900719,U20A20227,82125008)Innovative Research Team of High-level Local Universities in Shanghai,Science and Technology Committee Rising-Star Program (19QA1401400)111 Project (B18015)Shanghai Municipal Science and Technology Major Project (2018SHZDZX01)Shanghai Center for Brain Science and Brain-Inspired Technology。
文摘Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research relies heavily on intense manual labor and lacks standardized assessment.In this work,we established two standard benchmark datasets of NHPs in the laboratory:Monkeyin Lab(Mi L),which includes 13 categories of actions and postures,and MiL2D,which includes sequences of two-dimensional(2D)skeleton features.Furthermore,based on recent methodological advances in deep learning and skeleton visualization,we introduced the Monkey Monitor Kit(Mon Kit)toolbox for automatic action recognition,posture estimation,and identification of fine motor activity in monkeys.Using the datasets and Mon Kit,we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome(RTT).Mon Kit was used to assess motor function,stereotyped behaviors,and depressive phenotypes,with the outcomes compared with human manual detection.Mon Kit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency,thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys.
基金supported by the Simons Foundation,the National Natural Science Foundation of China(No.NSFC61405038)the Fujian provincial fund(No.2020J01453).
文摘Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies.
文摘In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.
基金financial support from the National Natural Science Foundation of China(Nos.51773141,51873139,61961160731,62175171 and 22175124)funded by the Suzhou Science and Technology Plan Project(No.SYG202010)+2 种基金supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.
基金partly supported by the Natural Science Foundation of Yunnan Provence.(No.2000B0001 R).
文摘An easy and mild way to construct 13-hydroxy-9,15-cyclo GA skeletons was reported and it could be used as a general protocol in the synthesis of GAs with this structure.
基金supported in part by the National Natural Science Foundation of China(82371957 and 82371956)the National Key R&D Program of China(2021YFC2501703 and 2021YFC2501701)+3 种基金Capital’s Funds for Health Improvement and Research(2024-1-1121)Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes(JYY2023-11 and JYY2023-8)Beijing Physician Scientist Training Project(BJPSTP-2024-08)Beijing Municipal Health Commission(BJRITO-RDP-2025).
文摘Motivated by the advancement of large language models,multiagent technology,and digital twins,digital skeletons are bringing new development opportunities in orthopedics.Data-driven deep learning(DL)network models can effectively learn medical feature representations from multimodal and cross-scale datasets to accurately identify orthopedic diseases,making the most of the vast amount of medical imaging data and records collected over the years.Digital skeleton technology can be boosted by artificial intelligence(AI)to quickly and accurately identify common diseases and investigate the most difficult problems as researchers continue to integrate a wide range of DL techniques into orthopedic applications.
基金financially supported by the Natural Science Foundation of China (62374104)the Jinan Central Hospital (1190022050)the Shandong Provincial Natural Science Foundation (ZR2023QE322 and ZR2022QH069)。
文摘Rational design of single atom nanozymes(SAzymes)could be achieved through the accurate configuration regulation of metal coordination sites,nevertheless,the un-defined carbon environment of traditional SAzymes synthesized by high-temperature pyrolysis makes it difficult to unveil the influence of carbon skeletons with enzyme mimicking activities of SAzymes.Herein,we investigated the relationship between the carbon skeletons and the enzyme mimicking activities through the construction of a series of fullyπ-conjugated covalent organic polymer(COP)-based SAzymes with analogous Fe-N_(4)sites.The experimental results and theoretical calculations demonstrated that carbon skeletons bonded to the Fe-N_(4)catalytic sites strongly affect the enzyme mimicking activities of COP SAzymes.When the number of benzene rings in carbon skeletons was 1,the COP SAzyme possessed much more remarkable oxidase(OXD)and peroxidase(POD)mimicking activities,and further reducing or increasing the benzene rings would dramatically inhibit the enzyme mimicking activity.Additionally,the fantastic enzyme mimicking activity of COP-1 could be applied to colorimetric detection of biological molecules and degradation of pollutants.These results provide a new perspective for the rational fabrication of SAzymes with high catalytic efficiency.
基金the National Natural Science Foundation of China(Nos.52071225 and 51672181)the Czech Republic through ERDF“Institute of Environmental Technology-Excellent Research”(No.CZ.02.1.01/0.0/0.0/16_019/0000853)M.H.R.acknowledges the Sino-German Research Institute for their support(Project GZ 1400).
文摘Inspired by the natural corn structure,a Si@hollow graphene shell@graphene(Si@GS@G)anode material was prepared in which silicon nanoparticles were preliminarily anchored onto the surface of an elastic graphene shell and further constrained using graphene sheets.Hollow graphene oxide shells with abundant surficial hydrogen bonds,which were synthesized using a novel bottom-up method,were used as an intermediate material to anchor positively charged silicon nanoparticles via electrostatic attraction and achieve a rational spatial distribution.The inner hollow graphene shell anchorage and outer graphene constraint synergistically constituted a porous and robust conductive corn-like structure.The as-fabricated Si@GS@G anode afforded efficient electron and ion transport pathways and improved structural stability,thereby enhancing Li+storage capability(505 mAh·g^(−1)at 10 A·g^(−1))and extending the lifespan compared to the single hollow graphene shell or graphene sheet-protected Si anode(72%capacity retention after 500 cycles).The improved kinetics of the Si@GS@G anode were investigated using electro impedance spectroscopy,galvanostatic intermittent titration,and pseudocapacitance contribution rate analysis,and the structural evolution was analyzed using ex situ electron microscopy.This study proposes a novel hollow graphene oxide shell as an activated intermediate material for designing a porous electrode structure that facilitates an enhanced electrochemical performance.
文摘Visible light photocatalytic redox catalysis has become a powerful tool for organic synthesis, and has opened up new avenues for the formation of challenging structural skeletons and chemical bonds. In this respect, diverse photocatalysts, including ruthenium(II), iridium(Ⅲ), and organic dyes, have been most commonly applied.
基金Supported by the National Natural Science Foundation of China(Grant No.90411015)the University Doctoral Foundation(Grant No.20050284011)+2 种基金the Foundation of Important Basic Research at Nanjing University(Grant No.0209005206)Open Foundation of the State Key Laboratory of Loess and Quaternary Geology from the Institute of Earth Environment,CAS(Grant No.SKLLQG0503)the Physical Geography of"985"Items and the Test Foundation of Modern Analyses Center of Nanjing University(Grant No.0209001309)
文摘Nearly 200000 animal skeletons are unearthed in the Unit T0202 from Zhongba Site of Zhongxian County.According to the analysis of 129165 specimens,these skeletons may be classified into 5 kinds, namely,Mammalia,Osteichthys,Aves,Amphibian and Reptilia,which belong to 13 orders,28 families and 42 genera.In this paper,based on archeological dating and AMS 14 C data,through statistically analyzing the unearthed skeletons and studying the change of the smallest individual numbers,these research results detected the following:1)In almost all the time of 2370―200 BC,in Zhongba region, some animals distributed widely,such as Muntiacus sp,Elaphodus cephalophus and Muntiacus sp. inhabiting in glade and grassland,Scrofa sp.and Canis familiaris raised by the ancient people,rodentia rabbit and Rattus rattus,which suggested that a fairly good ecological environment of forest and grassland was preserved at that period and the predecessors began to raise domestic animals from 1750 to 1000 BC,which has lasted until today.2)Rhinoceros only lived during 2000―1750 BC,1000― 700 BC and 700―500 BC,which indicates that the ecological environment of grassland and wetland might be better in these phases.3)Macaca sp.and Ursus arctos appeared only after 1750―1000 BC, which may show that the forest condition is better for animals to live during 1750―200 BC.4)The smallest individual numbers of Bublus sp.,bos sp.and otters emerged during about 2370―1750 BC, which perhaps infers that water area during the early period was wider than that of the late period.5) Since skeletons of rhinoceros are discovered in strata of Zhongba Site during 2000―1750 BC and 1000―500 BC,according to the climate and ecology environment which rhinoceros live in now,the average annual temperature and precipitation during 2000―1750 BC and 1000―500 BC are supposed to be probably higher than that of today.Although Zhu Kezhen considered that the first low temperature period in the past 5000 years of China was between 1100 BC and 850 BC,massive pollen of Morus, Ulmus,Fagus,Quercus,Castanea,etc.were found in Dajiuhu peat at that time,which should indicate that the climate was still moderate for living things to live at least in Dajiuhu basin and Zhongba Site.6) Because skeletons of Gervus albirostris were unearthed during 310―200 BC at Zhongba Site,based onthe climate and the ecological environment those animals live in now,the average annual temperature and the average annual precipitation in Zhongba area between 310 BC and 200 BC should be lower than those of today,which is confirmed by the TOC research of Zhongba Site strata.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金supported in part by the National Natural Science Foundation of China under Grants 61973065,U20A20197,61973063.
文摘Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.
基金supported by the National Key Research and Development Program of China(2023YFD1700500,2021YFD1700100)the National Natural Science Foundation of China(22177051,32061143045)+2 种基金the Fundamental Research Funds for the Central Universities(KYCYXT2022010)Sichuan Key Research and Development Program(22ZDYF0186,2021YFN0134)the College Student Research Training Program(202110307002T).
文摘As a natural alkaloid found extensively in cereal crops, gramine not only plays a crucial role in protecting barley and other grasses from various pests, but also reduces palatability for ruminants. Scientists are trying to figure out how gramine gets into cereal plants: is it inherently present or transformed through a special process? The latest study published in Science by Sara Leite Dias and co-authors, provides a detailed explanation. The starting point of the transformation is identified, and the transformation process is confirmed through rigorous experiments.
基金supported from the National Natural Science Foundation of China(No.21920102003)the Key-Area Research and Development Program of Guangdong Province(No.2020B0303070002)the National Key R&D Program“Strategic Scientific and Technological Innovation Cooperation”Key Project(No.2022YFE0203600).
文摘Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The two novel skeleton compounds(1 and 6)were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes,respectively.Their structures were elucidated through a comprehensive analysis of spectroscopic data,including high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.The absolute configurations were determined using electronic circular dichroism(ECD)spectra,single-crystal X-ray crystallographic analyses,time-dependent density functional theory(TDDFT)ECD calculation,density functional theory(DFT)NMR calculations,and biomimetic syntheses.The biomimetic syntheses of the two novel skeletons(1 and 6)were inspired by potential biogenetic pathways,utilizing a predominant eudesmane-type sesquiterpene(A)in A.hedinii as the substrate.All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity.Compounds 2,8,and 10 exhibited significant activity in downregulating the expression ofα-smooth muscle actin(α-SMA),a protein involved in hepatic fibrosis.