This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance...This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.展开更多
We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and...We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and is on the list of endangered species. Previous studies have employed caliper-based measurements and two-dimensional (2D) X-ray imaging for anatomical analyses of the skeletal system or bone types of H. suweonensis. In this work we reconstructed three-dimensional (3D) skeletal images of H. suweonensis, utilizing a nondestructive micro-computed tomography (micro-CT) with a short scan and low radiation dose (i.e. 4 min and 0.16 Gy). Importantly, our approach can be applied to the imaging of 3D skeletal systems of other endangered frog species, allowing both versatile and high contrast images of anatomical structures without causing any significant damages to the living animal.展开更多
There have been divergent opinions on whether Conophyllia develops synapticulae and dissepiments since its erection in 1849, with different views existing on the morphology of columella in Conophyllia.This paper prese...There have been divergent opinions on whether Conophyllia develops synapticulae and dissepiments since its erection in 1849, with different views existing on the morphology of columella in Conophyllia.This paper presents a comprehensive review of Conophyllia, and revises the diagnosis according to new material from the Renacuo area of Gêrzê, Tibet.The revised diagnosis emphasises the following features: solitary coral; abundant radial elements subequal in thickness, lateral faces with granules and synapticulae; parietal, papillar or incompact columella, a few species lacking in columella; developed dissepiments.Individuals of Conophyllia have laminar septa of Triadophyllum type in earlier ontogenetic stages, while their septa in later ontogenetic stages are more fenestrate.The geological and geographical distribution of this genus is discussed, with five species of Conophylliafrom the Renacuo area of Gêrzê, Tibet being described and illustrated, including one new species and two in open nomenclatue.展开更多
基金funded by Umm Al-Qura University,Saudi Arabia under grant number:25UQU4300346GSSR08.
文摘This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (grant numbers: NRF-2015R1C1A1A01052498 and NRF2014R1A1A1006010)
文摘We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and is on the list of endangered species. Previous studies have employed caliper-based measurements and two-dimensional (2D) X-ray imaging for anatomical analyses of the skeletal system or bone types of H. suweonensis. In this work we reconstructed three-dimensional (3D) skeletal images of H. suweonensis, utilizing a nondestructive micro-computed tomography (micro-CT) with a short scan and low radiation dose (i.e. 4 min and 0.16 Gy). Importantly, our approach can be applied to the imaging of 3D skeletal systems of other endangered frog species, allowing both versatile and high contrast images of anatomical structures without causing any significant damages to the living animal.
基金supported by the Project "Tectonic attributes of the South Qiangtang Mesozoic-Cenozoic basin, based on deformation and metamorphic character" (Project number is: 1212011121271)the Project "1:50,000 Geological Survey of Four Regions in Renacuo Area" (Project number is: 1212011121244)
文摘There have been divergent opinions on whether Conophyllia develops synapticulae and dissepiments since its erection in 1849, with different views existing on the morphology of columella in Conophyllia.This paper presents a comprehensive review of Conophyllia, and revises the diagnosis according to new material from the Renacuo area of Gêrzê, Tibet.The revised diagnosis emphasises the following features: solitary coral; abundant radial elements subequal in thickness, lateral faces with granules and synapticulae; parietal, papillar or incompact columella, a few species lacking in columella; developed dissepiments.Individuals of Conophyllia have laminar septa of Triadophyllum type in earlier ontogenetic stages, while their septa in later ontogenetic stages are more fenestrate.The geological and geographical distribution of this genus is discussed, with five species of Conophylliafrom the Renacuo area of Gêrzê, Tibet being described and illustrated, including one new species and two in open nomenclatue.