Sarcopenia,a progressive and systemic skeletal muscle disorder marked by the accelerated deterioration of both muscle function and mass,is highly prevalent among the elderly population,significantly contributing to an...Sarcopenia,a progressive and systemic skeletal muscle disorder marked by the accelerated deterioration of both muscle function and mass,is highly prevalent among the elderly population,significantly contributing to an elevated risk of adverse outcomes,including falls,fractures,and muscle weakness.Clinical investigations have identified a strong correlation between sarcopenia and several prevalent degenerative skeletal muscle disorders.This correlation is attributed to imbalances in joint mechanics resulting from localized muscle atrophy and the influence of musculoskeletal secretory factors.In this review,we discuss the broader implications of sarcopenia and critically evaluate the currently established assessment methods.Furthermore,the clinical significance of prevalent musculoskeletal disorders(including osteoporosis,osteoarthritis,and spinal pathologies)in relation to sarcopenia,alongside the underlying mechanisms influencing this relationship,is summarized.Additionally,the effects of sarcopenia on the therapeutic efficacy of medications and surgical interventions for musculoskeletal conditions are reviewed.Sarcopenia is intricately linked to the onset,progression,and prognosis of musculoskeletal disorders.Future research should prioritize elucidating the potential mechanisms that connect muscle loss with skeletal muscle diseases,and investigating whether mitigating sarcopenia symptoms could decelerate the progression of these disorders,thereby paving new pathways for therapeutic interventions.展开更多
Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow f...Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow for sarcomerogenesis are not fully understood.In some diseases,such as cerebral palsy in children,sarcomerogenesis appears to be inhibited or at least reduced,1,2 often causing severe restrictions in muscle and joint function.展开更多
BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated f...BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated fatty liver disease(MAFLD)could provide an important clinical evidence base for the development of relevant nutritional guidelines.AIM To investigate the effect of total dietaryω-3 PUFAs and their subtypes on skeletal muscle mass in MAFLD.METHODS This cross-sectional study involved 2316 participants from four National Health and Nutrition Examination Survey cycles between 2011 and 2018.Dietary intake ofω-3 PUFAs was collected through 24-hour dietary recall interviews.Appendicular skeletal muscle mass index(ASMI)was calculated by dividing ASM in kilograms by height squared.RESULTS The multiple linear regression model showed significant relationships for dietary intake of totalω-3 PUFAs with higher ASMI(β:0.06,95%CI:0.01-0.11)in MAFLD patients.Dietary a-linolenic acid(ALA)(β:0.06,95%CI:0.01-0.12),docosapentaenoic acid(β:1.28,95%CI:0.01-2.54),and docosahexaenoic acid(DHA)(β:0.19,95%CI:0.01-0.37)were significantly associated with higher ASMI,while intake of stearidonic acid and eicosapentaenoic acid did not improve ASMI.In patients with high probability of liver fibrosis,dietary intake of ALA was associated with higher ASMI(β:0.11,95%CI:0.03-0.18).Stratified analysis found that DHA was associated with higher ASMI in patients with obesity and higher metabolic risk.CONCLUSION Increasing dietary intake ofω-3 PUFAs improved skeletal muscle health in patients with MAFLD.Patient with obesity and higher metabolic risk were more likely to benefit from intake of DHA.展开更多
Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and mol...Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders.The advent of single-cell RNA sequencing(scRNA-seq)technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity.Nevertheless,investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges.In this comprehensive review,we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines.By utilizing these methodologies,crucial insights into the developmental dynamics,maintenance of homeostasis,and pathological processes involved in spine,joint,bone,muscle,and tendon disorders have been uncovered.Specifically focusing on the joint diseases of degenerative disc disease,osteoarthritis,and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension.These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.展开更多
Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the ...Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the critical question of how these skeletal pathologies emerge.Here,we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards,especially in the perichondrium,the stem cell layer surrounding developing limbs essential for bone formation.Lrp1 deficiency in these stem cells causes joint fusion,malformation of cartilage/bone template and markedly delayed or lack of primary ossification.展开更多
BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in the...BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in these patients.However,their actual prevalence and pathophysiology remain to be elucidated.AIM To determine the prevalence of SMAs and to assess the significance of circulating myokines as biomarkers in patients with MASLD.METHODS Skeletal muscle strength and muscle mass were measured in a cross-sectional study in a cohort of 62 patients fulfilling MASLD criteria,recruited from the outpatient clinics of a tertiary level hospital.The degree of fibrosis and liver steatosis was studied using abdominal ultrasound and transitional elastography.Anthropometric and metabolic characteristics as well as serum levels of different myokines were also determined in the MASLD cohort.Statistical analysis was performed comparing results according to liver fibrosis and steatosis.RESULTS No significant differences were found in both skeletal muscle strength and skeletal muscle mass in patients with MASLD between different stages of liver fibrosis.Interestingly,serum levels of fibroblast growth factor-21(FGF21)were significantly higher in patients with MASLD with advanced hepatic fibrosis(F3-F4)than in those with lower fibrosis stages(F0-F2)(197.49±198.27 pg/mL vs 95.62±83.67 pg/mL;P=0.049).In addition,patients with MASLD with severe hepatosteatosis(S3)exhibited significantly higher serum levels of irisin(1116.87±1161.86 pg/mL)than those with lower grades(S1-S2)(385.21±375.98 pg/mL;P=0.001).CONCLUSION SMAs were uncommon in the patients with MASLD studied.Higher serum levels of irisin and FGF21 were detected in patients with advanced liver steatosis and fibrosis,respectively,with potential implications as biomarkers.展开更多
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc...Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
Skeletal dysplasia includes numerous genetic disorders marked by abnormal bone and cartilage growth,causing various spinal issues.The 2023 nosology identifies 771 distinct dysplasias involving 552 genes,with achondrop...Skeletal dysplasia includes numerous genetic disorders marked by abnormal bone and cartilage growth,causing various spinal issues.The 2023 nosology identifies 771 distinct dysplasias involving 552 genes,with achondroplasia being the most common and significantly affecting the spine.Other disorders include type II collagenopathies,sulphation defects,Filamin B disorders,and osteogenesis imperfecta,presenting with short stature,limb deformities,joint contractures,and spinal abnormalities.Spinal pathology often impacts physeal growth areas,leading to conditions like foramen magnum stenosis,atlantoaxial instability,spinal stenosis,kyphosis,and scoliosis.Non-orthopaedic symptoms can include hearing and vision loss,neurological issues like hydrocephalus,and cardiac abnormalities.The incidence is around 1 in 4000 to 5000 births,with achondroplasia at about 1 in 30000 live births.Advances in genetics and imaging enable prenatal diagnosis,though milder cases may go undetected.Effective management requires a multidisciplinary approach involving various specialists.This review emphasises early diagnosis,continuous monitoring,and comprehensive management of spinal pathology in skeletal dysplasia.In the current article,the authors present a thorough review on spinal conditions associated with skeletal dysplasia,their pathophysiology and management options.展开更多
Skeletal muscle satellite cells are stem cells characterized by their multipotency and capacity for in vitro proliferation.However,primary skeletal muscle satellite cells demonstrate limited proliferative capacity in ...Skeletal muscle satellite cells are stem cells characterized by their multipotency and capacity for in vitro proliferation.However,primary skeletal muscle satellite cells demonstrate limited proliferative capacity in vitro,which impedes their investigation in poultry skeletal muscle research.Cell immortalization techniques have emerged as valuable tools to address this limitation and facilitate the study of skeletal muscle satellite cell functions.This study achieved the immortalization of chicken skeletal muscle satellite cells through the transduction of primary cells with TERT(telomerase reverse transcriptase)amplified from chicken(chTERT)using a lentiviral vector via telomerase activity reconstitution.While the cells successfully overcame replicative senescence,complete immortalization was not achieved.Initial functional characterization revealed that the proliferative properties and cell cycle characteristics of the immortalized chicken skeletal muscle satellite cell lines(ICMS)closely resembled those of chicken primary muscle satellite cells(CPMSCs).Serum dependency analysis and soft agar assays confirmed that ICMS did not undergo malignant transformation.Furthermore,induced differentiation experiments demonstrated preserved differentiation capacity in ICMS.The established cell lines provide a fundamental framework for developing immortalized poultry cell lines and offer a cellular model for investigating poultry skeletal muscle-related functional genes.展开更多
Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effec...Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effects of 20-hydroxyecdysone(20E)on hindlimb skeletal tissue following tourniquet-induced ischemia/reperfusion injury.Methods:Animals were divided into 4 groups—control group(Control),Control+20E(C+20E),mice with IRI(IRI),and mice with IRI+20E(IRI+20E).IRI was modeled by applying a tourniquet to the hind limb for 2 h with reperfusion for 1 h.5 mg/kg of 20E was administered intraperitoneally for 14 days.Afterward,the physical activity of mice,the histological structure of the quadriceps femoris,the expression of genes encoding proteins induced by hypoxia and involved in tissue adaptation to ischemia,and the functional parameters of skeletal muscle mitochondria were assessed.Results:It was shown that IRI of the limbs leads to functional disorders,depression of muscle function,accumulation of malondialdehyde(MDA)in mitochondria,and a decrease in their Ca2+buffering capacity,as well as an increase in the expression of HIF-1α,VGEF-A,PGC1αand PDGF-BB genes associated with adaptation to ischemia.20E reduced the intensity of degenerative processes in skeletal muscles,which was expressed in a decrease in the number of centrally nucleated fibers.Analysis of gene expression levels indicated a high degree of adaptation of animals to IRI.20E reduced the level of MDA in mitochondria,but did not affect the rate of respiration and calcium retention capacity of organelles both in normal conditions and during IRI.Conclusion:20E partially alleviates the skeletal muscle damage caused by IRI and can be used as part of combination therapy.展开更多
BACKGROUND Many studies have found that sarcopenia is related to the survival of patients with liver cancer,which may lead to worse prognosis.AIM To investigate the relationship between skeletal muscle mass and progno...BACKGROUND Many studies have found that sarcopenia is related to the survival of patients with liver cancer,which may lead to worse prognosis.AIM To investigate the relationship between skeletal muscle mass and prognosis in patients with liver cancer receiving targeted therapy by meta-analysis.METHODS PubMed,Embase,Cochrane Library,and Web of Science were searched for clinical studies on the relationship between skeletal muscle index(SMI)and the prognosis of patients with liver cancer receiving targeted therapy from inception to March 1,2022.Meta-analysis and sensitivity analysis of the data were performed using Stata 16.0 software.RESULTS A total of 6877 studies were searched,and finally 12 articles with 1715 cases were included.Meta-analysis result of 8 articles showed that compared with non-low SMI group,the overall survival(OS)of patients with liver cancer in the low SMI group was significantly shorter(hazard ratio=1.60,95%confidence interval:1.44-1.77,P=0.000).Meta-analysis result of 4 articles showed that,compared with low SMI group,patients in the nonlow SMI group had longer OS(hazard ratio=0.59,95%confidence interval:0.38-0.91,P=0.018).CONCLUSION Skeletal muscle mass is positively correlated with OS in patients with liver cancer receiving targeted therapy.展开更多
Obesity is associated with skeletal muscle mass loss and physical dysfunction.Krill oil(KO)has been shown to be beneficial in human health.However,the effect of KO on obesity-induced skeletal muscle atrophy is still u...Obesity is associated with skeletal muscle mass loss and physical dysfunction.Krill oil(KO)has been shown to be beneficial in human health.However,the effect of KO on obesity-induced skeletal muscle atrophy is still unclear.In this study,the male C57BL/6J mice were fed a high-fat diet(HFD)for 12 weeks to induce obesity,and then were intragastric administration with 400 mg/kg bw KO for an additional 6 weeks.The results showed that KO treatment reduced body weight,fat accumulation and serum pro-inflammatory cytokines in HFD-induced obese mice.Importantly,KO treatment attenuated skeletal muscle atrophy in HFD-fed mice,as evidenced by preserving skeletal muscle mass,average myofiber cross-sectional area and grip strength.KO administration also mitigated obesity-induced ectopic lipid deposition and inflammatory response in skeletal muscle.Additionally,KO treatment inhibited the transcriptional activities of nuclear factor-κB(NF-κB)p65 and forkhead box O 3a(FoxO3a),and then down-regulated muscle atrophy F-box(MAFbx)and muscle-specific RING finger protein 1(MuRF1)protein levels in skeletal muscle from HFD-fed mice.KO administration also improved obesity-induced impaired muscle protein synthesis via activating PI3K/Akt pathway.Furthermore,KO treatment enhanced muscle mitochondrial biogenesis in HFD-induced obese mice via activating PGC-1αpathway.Collectively,KO might be developed as a potential nutritional supplement for the prevention and treatment of obesity-induced skeletal muscle atrophy.展开更多
1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site o...1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site of insulin resistance,with impaired insulin signaling and reduced glucose transport activity contributing to metabolic dysfunction.展开更多
BACKGROUND Fibro-adipogenic progenitors(FAPs)are a group of mesenchymal stem cells that cause fibro-fatty degeneration in skeletal muscle in various chronic disease mode-ls.FAPs also play a role in preventing muscle d...BACKGROUND Fibro-adipogenic progenitors(FAPs)are a group of mesenchymal stem cells that cause fibro-fatty degeneration in skeletal muscle in various chronic disease mode-ls.FAPs also play a role in preventing muscle degeneration at acute stages during disease progression.However,few studies have reported the changes in and function of FAPs in the acute phase after tendon rupture.AIM To clarify the changes in the number of FAPs and their impact on skeletal muscle soon after tendon rupture to facilitate future studies targeting FAPs to treat muscle degeneration.METHODS We utilized Pdgfra-H2B::eGFP mice to trace and quantify FAPs in a tibialis anterior tenotomy(TAT)model at 0 and 3 days,1 week,2 weeks,3 weeks,4 weeks,5 weeks,and 6 weeks post-injury,and the results were further validated using fluorescence-activated cell sorting analysis with C57BL/6 mice at the same post-injury timepoints.We subsequently used PdgfraCreERT::RosaDTA mice,and evaluated the severity of post-TAT skeletal muscle degeneration with or without FAP-depletion.RESULTS The number of FAPs peaked at 1 week post-TAT before gradually declining to a level comparable to that pre-TAT.The change in the number of FAPs was potentially temporally correlated with the progression of skeletal muscle degeneration after TAT.FAP-depletion led to more severe degeneration early after TAT,indicating that FAPs potentially alleviate muscle degeneration after tendon rupture in the early post-injury phase.CONCLUSION FAPs potentially alleviate the degeneration of skeletal muscle in the acute stage after tendon rupture.展开更多
Highland barley tea(HBT)is made from roasted barley seeds and is abundant inβ-glucan,amino acids,minerals,phenolics,and other natural active ingredients.These natural compounds found in whole grains have been shown t...Highland barley tea(HBT)is made from roasted barley seeds and is abundant inβ-glucan,amino acids,minerals,phenolics,and other natural active ingredients.These natural compounds found in whole grains have been shown to slow aging and positively affect skeletal muscle function.As a result,studying the effects of HBT on the skeletal muscle health of the elderly population is critical from a scientific and societal standpoint for improving their health status and reducing the medical burden on society.The antioxidant activity and the content of natural active substances were used as indicators to screen the optimal process of HBT brewing.The effects of long-term HBT consumption on aging in mice were investigated by using HBT as a substitute for drinking water in naturally aging mice for a 5-month intervention.Afterward,various factors were measured,such as basic physiological indices,inflammation,plasma metabolites,skeletal muscle function,and exercise capacity,to evaluate the effects of HBT on aging in mice.Long-term consumption of HBT reduced body and spleen weight,increased body weight percentage of skeletal muscle,and reduced plasma inflammation levels in aging mice.Metabolomic results showed increased plasma levels of the mitochondrial marker short-chain acylcarnitine and some amino acids.Additionally,there was a decrease in bile and long-chain acylcarnitine.The level of fibrosis in the gastrocnemius muscle of aging mice was suppressed,and the percentage of typeⅠmuscle fibers was increased,improving the endurance of the mice.Thus,long-term consumption of HBT may reduce body weight and increase skeletal muscle mitochondrial activity and exercise capacity in aging mice by reducing inflammation levels and alleviating mitochondrial damage.展开更多
This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance...This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.展开更多
Skeletal stem cells(SSCs)are tissue-specific stem cells characterized by their capacity for self-renewal and their position at the apex of the differentiation hierarchy.They can generate mature bone cell types essenti...Skeletal stem cells(SSCs)are tissue-specific stem cells characterized by their capacity for self-renewal and their position at the apex of the differentiation hierarchy.They can generate mature bone cell types essential for bone development,maintenance,and repair.Lineage tracing experiments have demonstrated that SSCs reside in the bone marrow,periosteum,and the resting zone of the growth plate.These findings not only enhance our understanding of bone growth and development mechanisms but also offer novel therapeutic strategies for conditions such as epiphyseal injuries,fractures,osteoarthritis(OA),and other orthopedic diseases.Recent advancements in biological scaffold technology,combined with 3D printing techniques,have facilitated bone tissue regeneration using bone stem cells.In OA,SSCs antagonize inflammatory factors,such as tumor necrosis factor-alpha and interleukin-1 beta,via paracrine secretion of insulin-like growth factor 1 and transforming growth factor-beta.Simultaneously,SSCs secrete matrix metalloproteinase inhibitors to maintain cartilage matrix homeostasis.In femoral head necrosis,SSCs promote angiogenesis by secreting vascular endothelial growth factor and optimize the repair microenvironment through immune regulation,such as by inhibiting the nuclear factor-kappa B pathway.Additionally,bone stem cells have shown promise in cartilage regeneration therapy,particularly in treating degenerative diseases like OA and articular cartilage damage,thereby improving joint function.This review summarizes the latest research progress on the role of skeletal stem cells in bone and joint injury regeneration and provides new insights into potential therapeutic approaches.展开更多
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathw...Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy-and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.展开更多
BACKGROUND Correcting skeletal class III malocclusion with anterior crossbite in adolescents using only orthodontic treatment poses challenges.This report highlights a novel approach leveraging improved superelastic N...BACKGROUND Correcting skeletal class III malocclusion with anterior crossbite in adolescents using only orthodontic treatment poses challenges.This report highlights a novel approach leveraging improved superelastic Ni-Ti alloy wire(ISW)to address these conditions effectively.CASE SUMMARY A 17-year-old male patient presented with the chief complaint of an underbite.The patient was given a diagnosis of skeletal class III malocclusion and anterior crossbite.The orthodontic treatment plan was implemented and did not require teeth extractions or orthognathic surgery.Key interventions involved the app-lication of ISW,intermaxillary elastics,and ISW unilateral multi-bend edgewise archwire.The unique combination of these techniques enabled the correction without the need for extractions or surgery.This approach leverages the advanced biomechanical properties of ISW,including its super-elasticity and shape memory,to enhance treatment efficacy.The treatment lasted 17 months,and major improvements in overjet,overbite,and alignment were achieved.The results were favorable,and stability was discovered during follow-up.CONCLUSION The application of ISW for treating skeletal class III malocclusion with anterior crossbite in a 17-year-old male patient resulted in exceptional outcomes.The treatment led to a marked improvement in the patient’s facial profile and to proper overjet,overbite,and midline alignment.These results were maintained over a one-year follow-up,indicating that a minimally invasive orthodontic approach can effectively address complex skeletal discrepancies in adolescent patients.This case illustrates that with the careful use of advanced orthodontic techniques,major skeletal challenges can be resolved without resorting to surgical procedures.展开更多
基金supported by The National Natural Science Foundation of China(82405429)The Medical and Health Science and Technology Program of Hangzhou(ZD20250272)+1 种基金Key Discipline of Traditional Chinese Medicine in Zhejiang Province(2024-XK-57)The Construction Fund of Key Medical Discipline of Hangzhou(2025HZZD16).
文摘Sarcopenia,a progressive and systemic skeletal muscle disorder marked by the accelerated deterioration of both muscle function and mass,is highly prevalent among the elderly population,significantly contributing to an elevated risk of adverse outcomes,including falls,fractures,and muscle weakness.Clinical investigations have identified a strong correlation between sarcopenia and several prevalent degenerative skeletal muscle disorders.This correlation is attributed to imbalances in joint mechanics resulting from localized muscle atrophy and the influence of musculoskeletal secretory factors.In this review,we discuss the broader implications of sarcopenia and critically evaluate the currently established assessment methods.Furthermore,the clinical significance of prevalent musculoskeletal disorders(including osteoporosis,osteoarthritis,and spinal pathologies)in relation to sarcopenia,alongside the underlying mechanisms influencing this relationship,is summarized.Additionally,the effects of sarcopenia on the therapeutic efficacy of medications and surgical interventions for musculoskeletal conditions are reviewed.Sarcopenia is intricately linked to the onset,progression,and prognosis of musculoskeletal disorders.Future research should prioritize elucidating the potential mechanisms that connect muscle loss with skeletal muscle diseases,and investigating whether mitigating sarcopenia symptoms could decelerate the progression of these disorders,thereby paving new pathways for therapeutic interventions.
文摘Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow for sarcomerogenesis are not fully understood.In some diseases,such as cerebral palsy in children,sarcomerogenesis appears to be inhibited or at least reduced,1,2 often causing severe restrictions in muscle and joint function.
基金Supported by The National Natural Science Foundation of China,No.82103356.
文摘BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated fatty liver disease(MAFLD)could provide an important clinical evidence base for the development of relevant nutritional guidelines.AIM To investigate the effect of total dietaryω-3 PUFAs and their subtypes on skeletal muscle mass in MAFLD.METHODS This cross-sectional study involved 2316 participants from four National Health and Nutrition Examination Survey cycles between 2011 and 2018.Dietary intake ofω-3 PUFAs was collected through 24-hour dietary recall interviews.Appendicular skeletal muscle mass index(ASMI)was calculated by dividing ASM in kilograms by height squared.RESULTS The multiple linear regression model showed significant relationships for dietary intake of totalω-3 PUFAs with higher ASMI(β:0.06,95%CI:0.01-0.11)in MAFLD patients.Dietary a-linolenic acid(ALA)(β:0.06,95%CI:0.01-0.12),docosapentaenoic acid(β:1.28,95%CI:0.01-2.54),and docosahexaenoic acid(DHA)(β:0.19,95%CI:0.01-0.37)were significantly associated with higher ASMI,while intake of stearidonic acid and eicosapentaenoic acid did not improve ASMI.In patients with high probability of liver fibrosis,dietary intake of ALA was associated with higher ASMI(β:0.11,95%CI:0.03-0.18).Stratified analysis found that DHA was associated with higher ASMI in patients with obesity and higher metabolic risk.CONCLUSION Increasing dietary intake ofω-3 PUFAs improved skeletal muscle health in patients with MAFLD.Patient with obesity and higher metabolic risk were more likely to benefit from intake of DHA.
基金National Key Research and Development Program of China(2022YFA1103202)National Natural Science Foundation of China(82272507,32270887,and 32200654)+6 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-ZDJO008)Postdoctoral Innovative Talent Support Program(BX20220397)Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning(SFLKF202201)Project for Enhancing Innovation of Army Medical University(2023X1839)Talent Innovation Training Program at the Army Medical Center(ZXZYTSYS09)General Hospital of Western Theater Command Research Project(2021-XZYG-B10)University Grants Committee,Research Grants Council of Hong Kong,China(14113723,N_CUHK472/22,C7030-18G,T13-402/17-N,and AoE/M-402/20)。
文摘Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders.The advent of single-cell RNA sequencing(scRNA-seq)technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity.Nevertheless,investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges.In this comprehensive review,we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines.By utilizing these methodologies,crucial insights into the developmental dynamics,maintenance of homeostasis,and pathological processes involved in spine,joint,bone,muscle,and tendon disorders have been uncovered.Specifically focusing on the joint diseases of degenerative disc disease,osteoarthritis,and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension.These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
基金The Andor dragonfly Spinning Disk microscope in the CCI was funded by the BBSRC(BB/R01390X/1)This work was supported by the ministry of education of the Kingdom of Saudi Arabia(to M.Alhashmi)+6 种基金Libyan Ministry of Higher Education and Scientific Research and ECMage(to A.M.E.Gremida)Qatar National Research Fund(to N.A.Al-Maslamani)European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement(860635 to M.Antonaci and A.Kerr)BBSRC Grants(BB/T00715X/1 to S.K.Maharana and G.N.WheelerBB/X000907/1 to D.A.Turner)Versus Arthritis Career Development Fellowship(21447 to K.Yamamoto)Versus Arthritis Bridging Fellowship(23137 to K.Yamamoto).
文摘Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the critical question of how these skeletal pathologies emerge.Here,we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards,especially in the perichondrium,the stem cell layer surrounding developing limbs essential for bone formation.Lrp1 deficiency in these stem cells causes joint fusion,malformation of cartilage/bone template and markedly delayed or lack of primary ossification.
文摘BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in these patients.However,their actual prevalence and pathophysiology remain to be elucidated.AIM To determine the prevalence of SMAs and to assess the significance of circulating myokines as biomarkers in patients with MASLD.METHODS Skeletal muscle strength and muscle mass were measured in a cross-sectional study in a cohort of 62 patients fulfilling MASLD criteria,recruited from the outpatient clinics of a tertiary level hospital.The degree of fibrosis and liver steatosis was studied using abdominal ultrasound and transitional elastography.Anthropometric and metabolic characteristics as well as serum levels of different myokines were also determined in the MASLD cohort.Statistical analysis was performed comparing results according to liver fibrosis and steatosis.RESULTS No significant differences were found in both skeletal muscle strength and skeletal muscle mass in patients with MASLD between different stages of liver fibrosis.Interestingly,serum levels of fibroblast growth factor-21(FGF21)were significantly higher in patients with MASLD with advanced hepatic fibrosis(F3-F4)than in those with lower fibrosis stages(F0-F2)(197.49±198.27 pg/mL vs 95.62±83.67 pg/mL;P=0.049).In addition,patients with MASLD with severe hepatosteatosis(S3)exhibited significantly higher serum levels of irisin(1116.87±1161.86 pg/mL)than those with lower grades(S1-S2)(385.21±375.98 pg/mL;P=0.001).CONCLUSION SMAs were uncommon in the patients with MASLD studied.Higher serum levels of irisin and FGF21 were detected in patients with advanced liver steatosis and fibrosis,respectively,with potential implications as biomarkers.
基金funded by JSPS KAKENHI Grant Numbers JP26290015 and JP21H02655(to TK)from Ministry of Education,Culture,Sports,Science,and Technology of Japan(MEXT)。
文摘Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
文摘Skeletal dysplasia includes numerous genetic disorders marked by abnormal bone and cartilage growth,causing various spinal issues.The 2023 nosology identifies 771 distinct dysplasias involving 552 genes,with achondroplasia being the most common and significantly affecting the spine.Other disorders include type II collagenopathies,sulphation defects,Filamin B disorders,and osteogenesis imperfecta,presenting with short stature,limb deformities,joint contractures,and spinal abnormalities.Spinal pathology often impacts physeal growth areas,leading to conditions like foramen magnum stenosis,atlantoaxial instability,spinal stenosis,kyphosis,and scoliosis.Non-orthopaedic symptoms can include hearing and vision loss,neurological issues like hydrocephalus,and cardiac abnormalities.The incidence is around 1 in 4000 to 5000 births,with achondroplasia at about 1 in 30000 live births.Advances in genetics and imaging enable prenatal diagnosis,though milder cases may go undetected.Effective management requires a multidisciplinary approach involving various specialists.This review emphasises early diagnosis,continuous monitoring,and comprehensive management of spinal pathology in skeletal dysplasia.In the current article,the authors present a thorough review on spinal conditions associated with skeletal dysplasia,their pathophysiology and management options.
基金supported by the grants from the National Natural Science Foundation of China(32372873,32441084 and 32172720)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(22HASTIT038)the Zhongyuan Youth Talent Support Program of China(ZYYCYU202012156).
文摘Skeletal muscle satellite cells are stem cells characterized by their multipotency and capacity for in vitro proliferation.However,primary skeletal muscle satellite cells demonstrate limited proliferative capacity in vitro,which impedes their investigation in poultry skeletal muscle research.Cell immortalization techniques have emerged as valuable tools to address this limitation and facilitate the study of skeletal muscle satellite cell functions.This study achieved the immortalization of chicken skeletal muscle satellite cells through the transduction of primary cells with TERT(telomerase reverse transcriptase)amplified from chicken(chTERT)using a lentiviral vector via telomerase activity reconstitution.While the cells successfully overcame replicative senescence,complete immortalization was not achieved.Initial functional characterization revealed that the proliferative properties and cell cycle characteristics of the immortalized chicken skeletal muscle satellite cell lines(ICMS)closely resembled those of chicken primary muscle satellite cells(CPMSCs).Serum dependency analysis and soft agar assays confirmed that ICMS did not undergo malignant transformation.Furthermore,induced differentiation experiments demonstrated preserved differentiation capacity in ICMS.The established cell lines provide a fundamental framework for developing immortalized poultry cell lines and offer a cellular model for investigating poultry skeletal muscle-related functional genes.
基金supported by a grant from the Russian Science Foundation(23-75-01061)。
文摘Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effects of 20-hydroxyecdysone(20E)on hindlimb skeletal tissue following tourniquet-induced ischemia/reperfusion injury.Methods:Animals were divided into 4 groups—control group(Control),Control+20E(C+20E),mice with IRI(IRI),and mice with IRI+20E(IRI+20E).IRI was modeled by applying a tourniquet to the hind limb for 2 h with reperfusion for 1 h.5 mg/kg of 20E was administered intraperitoneally for 14 days.Afterward,the physical activity of mice,the histological structure of the quadriceps femoris,the expression of genes encoding proteins induced by hypoxia and involved in tissue adaptation to ischemia,and the functional parameters of skeletal muscle mitochondria were assessed.Results:It was shown that IRI of the limbs leads to functional disorders,depression of muscle function,accumulation of malondialdehyde(MDA)in mitochondria,and a decrease in their Ca2+buffering capacity,as well as an increase in the expression of HIF-1α,VGEF-A,PGC1αand PDGF-BB genes associated with adaptation to ischemia.20E reduced the intensity of degenerative processes in skeletal muscles,which was expressed in a decrease in the number of centrally nucleated fibers.Analysis of gene expression levels indicated a high degree of adaptation of animals to IRI.20E reduced the level of MDA in mitochondria,but did not affect the rate of respiration and calcium retention capacity of organelles both in normal conditions and during IRI.Conclusion:20E partially alleviates the skeletal muscle damage caused by IRI and can be used as part of combination therapy.
基金Supported by Chongqing Young and Middle-aged Medical High-end Talents,No.YXGD202405Chongqing District and County Head Goose Talents,Chongqing Science and Technology and Health Joint Scientific Research Project on Traditional Chinese Medicine,No.2024ZYYB036Chongqing Banan District Science and Technology and Health Joint Scientific Research Project on Traditional Chinese Medicine,No.BNWJ202300112.
文摘BACKGROUND Many studies have found that sarcopenia is related to the survival of patients with liver cancer,which may lead to worse prognosis.AIM To investigate the relationship between skeletal muscle mass and prognosis in patients with liver cancer receiving targeted therapy by meta-analysis.METHODS PubMed,Embase,Cochrane Library,and Web of Science were searched for clinical studies on the relationship between skeletal muscle index(SMI)and the prognosis of patients with liver cancer receiving targeted therapy from inception to March 1,2022.Meta-analysis and sensitivity analysis of the data were performed using Stata 16.0 software.RESULTS A total of 6877 studies were searched,and finally 12 articles with 1715 cases were included.Meta-analysis result of 8 articles showed that compared with non-low SMI group,the overall survival(OS)of patients with liver cancer in the low SMI group was significantly shorter(hazard ratio=1.60,95%confidence interval:1.44-1.77,P=0.000).Meta-analysis result of 4 articles showed that,compared with low SMI group,patients in the nonlow SMI group had longer OS(hazard ratio=0.59,95%confidence interval:0.38-0.91,P=0.018).CONCLUSION Skeletal muscle mass is positively correlated with OS in patients with liver cancer receiving targeted therapy.
基金supported by the National Natural Science Foundation of China(82003447,32202023)the Natural Science Foundation of Shandong Province(ZR2021QC177)the Young Scholars Program of Shandong University(2018WLJH33,2018WLJH34)。
文摘Obesity is associated with skeletal muscle mass loss and physical dysfunction.Krill oil(KO)has been shown to be beneficial in human health.However,the effect of KO on obesity-induced skeletal muscle atrophy is still unclear.In this study,the male C57BL/6J mice were fed a high-fat diet(HFD)for 12 weeks to induce obesity,and then were intragastric administration with 400 mg/kg bw KO for an additional 6 weeks.The results showed that KO treatment reduced body weight,fat accumulation and serum pro-inflammatory cytokines in HFD-induced obese mice.Importantly,KO treatment attenuated skeletal muscle atrophy in HFD-fed mice,as evidenced by preserving skeletal muscle mass,average myofiber cross-sectional area and grip strength.KO administration also mitigated obesity-induced ectopic lipid deposition and inflammatory response in skeletal muscle.Additionally,KO treatment inhibited the transcriptional activities of nuclear factor-κB(NF-κB)p65 and forkhead box O 3a(FoxO3a),and then down-regulated muscle atrophy F-box(MAFbx)and muscle-specific RING finger protein 1(MuRF1)protein levels in skeletal muscle from HFD-fed mice.KO administration also improved obesity-induced impaired muscle protein synthesis via activating PI3K/Akt pathway.Furthermore,KO treatment enhanced muscle mitochondrial biogenesis in HFD-induced obese mice via activating PGC-1αpathway.Collectively,KO might be developed as a potential nutritional supplement for the prevention and treatment of obesity-induced skeletal muscle atrophy.
基金supported by the Swedish Research Council(201500165)a Wallenberg Scholars Award from the Knut and Alice Wallenberg Foundation(KAW 2023.0312)The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research center at the University of Copenhagen,partially funded by an unrestricted donation from the Novo Nordisk Foundation(NNF23SA0084103).
文摘1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site of insulin resistance,with impaired insulin signaling and reduced glucose transport activity contributing to metabolic dysfunction.
基金Supported by National Natural Science Foundation of China,No.82172509.
文摘BACKGROUND Fibro-adipogenic progenitors(FAPs)are a group of mesenchymal stem cells that cause fibro-fatty degeneration in skeletal muscle in various chronic disease mode-ls.FAPs also play a role in preventing muscle degeneration at acute stages during disease progression.However,few studies have reported the changes in and function of FAPs in the acute phase after tendon rupture.AIM To clarify the changes in the number of FAPs and their impact on skeletal muscle soon after tendon rupture to facilitate future studies targeting FAPs to treat muscle degeneration.METHODS We utilized Pdgfra-H2B::eGFP mice to trace and quantify FAPs in a tibialis anterior tenotomy(TAT)model at 0 and 3 days,1 week,2 weeks,3 weeks,4 weeks,5 weeks,and 6 weeks post-injury,and the results were further validated using fluorescence-activated cell sorting analysis with C57BL/6 mice at the same post-injury timepoints.We subsequently used PdgfraCreERT::RosaDTA mice,and evaluated the severity of post-TAT skeletal muscle degeneration with or without FAP-depletion.RESULTS The number of FAPs peaked at 1 week post-TAT before gradually declining to a level comparable to that pre-TAT.The change in the number of FAPs was potentially temporally correlated with the progression of skeletal muscle degeneration after TAT.FAP-depletion led to more severe degeneration early after TAT,indicating that FAPs potentially alleviate muscle degeneration after tendon rupture in the early post-injury phase.CONCLUSION FAPs potentially alleviate the degeneration of skeletal muscle in the acute stage after tendon rupture.
基金supported by the National Natural Science Foundation of China(32071166 and 32072254)the Ministry of Science and Technology of China(2022YFF1100502)+2 种基金the Earmarked Fund for China Agriculture Reasearch System(CARS-08-G19)the“Qing Lan Project”of Jiangsu Province and the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001)Fundamental Research Funds for the Central Universities(JUSRP622027)。
文摘Highland barley tea(HBT)is made from roasted barley seeds and is abundant inβ-glucan,amino acids,minerals,phenolics,and other natural active ingredients.These natural compounds found in whole grains have been shown to slow aging and positively affect skeletal muscle function.As a result,studying the effects of HBT on the skeletal muscle health of the elderly population is critical from a scientific and societal standpoint for improving their health status and reducing the medical burden on society.The antioxidant activity and the content of natural active substances were used as indicators to screen the optimal process of HBT brewing.The effects of long-term HBT consumption on aging in mice were investigated by using HBT as a substitute for drinking water in naturally aging mice for a 5-month intervention.Afterward,various factors were measured,such as basic physiological indices,inflammation,plasma metabolites,skeletal muscle function,and exercise capacity,to evaluate the effects of HBT on aging in mice.Long-term consumption of HBT reduced body and spleen weight,increased body weight percentage of skeletal muscle,and reduced plasma inflammation levels in aging mice.Metabolomic results showed increased plasma levels of the mitochondrial marker short-chain acylcarnitine and some amino acids.Additionally,there was a decrease in bile and long-chain acylcarnitine.The level of fibrosis in the gastrocnemius muscle of aging mice was suppressed,and the percentage of typeⅠmuscle fibers was increased,improving the endurance of the mice.Thus,long-term consumption of HBT may reduce body weight and increase skeletal muscle mitochondrial activity and exercise capacity in aging mice by reducing inflammation levels and alleviating mitochondrial damage.
基金funded by Umm Al-Qura University,Saudi Arabia under grant number:25UQU4300346GSSR08.
文摘This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.
基金Supported by Science Project of Hunan Provincial Healthy Commission,No.20230844.
文摘Skeletal stem cells(SSCs)are tissue-specific stem cells characterized by their capacity for self-renewal and their position at the apex of the differentiation hierarchy.They can generate mature bone cell types essential for bone development,maintenance,and repair.Lineage tracing experiments have demonstrated that SSCs reside in the bone marrow,periosteum,and the resting zone of the growth plate.These findings not only enhance our understanding of bone growth and development mechanisms but also offer novel therapeutic strategies for conditions such as epiphyseal injuries,fractures,osteoarthritis(OA),and other orthopedic diseases.Recent advancements in biological scaffold technology,combined with 3D printing techniques,have facilitated bone tissue regeneration using bone stem cells.In OA,SSCs antagonize inflammatory factors,such as tumor necrosis factor-alpha and interleukin-1 beta,via paracrine secretion of insulin-like growth factor 1 and transforming growth factor-beta.Simultaneously,SSCs secrete matrix metalloproteinase inhibitors to maintain cartilage matrix homeostasis.In femoral head necrosis,SSCs promote angiogenesis by secreting vascular endothelial growth factor and optimize the repair microenvironment through immune regulation,such as by inhibiting the nuclear factor-kappa B pathway.Additionally,bone stem cells have shown promise in cartilage regeneration therapy,particularly in treating degenerative diseases like OA and articular cartilage damage,thereby improving joint function.This review summarizes the latest research progress on the role of skeletal stem cells in bone and joint injury regeneration and provides new insights into potential therapeutic approaches.
基金supported by the National Natural Science Foundation of China(No.82172551)the Health Discipline Leader Project of Shanghai Municipal Health Commission(No.2022XD044),China.
文摘Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy-and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
文摘BACKGROUND Correcting skeletal class III malocclusion with anterior crossbite in adolescents using only orthodontic treatment poses challenges.This report highlights a novel approach leveraging improved superelastic Ni-Ti alloy wire(ISW)to address these conditions effectively.CASE SUMMARY A 17-year-old male patient presented with the chief complaint of an underbite.The patient was given a diagnosis of skeletal class III malocclusion and anterior crossbite.The orthodontic treatment plan was implemented and did not require teeth extractions or orthognathic surgery.Key interventions involved the app-lication of ISW,intermaxillary elastics,and ISW unilateral multi-bend edgewise archwire.The unique combination of these techniques enabled the correction without the need for extractions or surgery.This approach leverages the advanced biomechanical properties of ISW,including its super-elasticity and shape memory,to enhance treatment efficacy.The treatment lasted 17 months,and major improvements in overjet,overbite,and alignment were achieved.The results were favorable,and stability was discovered during follow-up.CONCLUSION The application of ISW for treating skeletal class III malocclusion with anterior crossbite in a 17-year-old male patient resulted in exceptional outcomes.The treatment led to a marked improvement in the patient’s facial profile and to proper overjet,overbite,and midline alignment.These results were maintained over a one-year follow-up,indicating that a minimally invasive orthodontic approach can effectively address complex skeletal discrepancies in adolescent patients.This case illustrates that with the careful use of advanced orthodontic techniques,major skeletal challenges can be resolved without resorting to surgical procedures.