期刊文献+
共找到5,150篇文章
< 1 2 250 >
每页显示 20 50 100
Janus Particle Sizing Agent for Interfacial Enhancement of Basalt Fiber/Poly(vinyl chloride)Composites
1
作者 Tian-Lin Liu Peng Kang +7 位作者 Hui Wang Da-Li Gao Kai Xu Tao Cai Qi Xin Sheng-Peng Shi Na Wang Fu-Xin Liang 《Chinese Journal of Polymer Science》 2025年第7期1125-1133,共9页
Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the inte... Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC. 展开更多
关键词 Basalt fiber sizing agent Janus particle Composite Interface
原文传递
Sizing a CHP Machines Based on Dynamic Energy Simulation Results:A Commercial Building Retrofit Case Study
2
作者 Marco Picco 《Journal of Civil Engineering and Architecture》 2025年第4期184-195,共12页
The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined ge... The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined generation of heat and power is analysed.Great attention is dedicated to the correct sizing of the CHP/CCHP plant both in term of energy efficiency and economic viability.A detailed building model is developed and used,through dynamic building simulation,to identify the potential energy and economic savings achievable with the installation of a CHP/CCHP sized based on the results of the simulation itself.The work proves the usefulness of dynamic energy simulation as an evaluation tool for retrofits of CHP plants and provides suggestions on the correct sizing of CHP equipment.It is also meant to prove what could be achieved if those kinds of analysis were carried out during the design of the building. 展开更多
关键词 Dynamic energy simulation CHP/CCHP sizing energy efficiency retrofit analysis
在线阅读 下载PDF
Beyond Classical Elasticity:A Review of Strain Gradient Theories,Emphasizing Computer Modeling,Physical Interpretations,and Multifunctional Applications
3
作者 Shubham Desai Sai Sidhardh 《Computer Modeling in Engineering & Sciences》 2025年第8期1271-1334,共64页
The increasing integration of small-scale structures in engineering,particularly in Micro-Electro-Mechanical Systems(MEMS),necessitates advanced modeling approaches to accurately capture their complex mechanical behav... The increasing integration of small-scale structures in engineering,particularly in Micro-Electro-Mechanical Systems(MEMS),necessitates advanced modeling approaches to accurately capture their complex mechanical behavior.Classical continuum theories are inadequate at micro-and nanoscales,particularly concerning size effects,singularities,and phenomena like strain softening or phase transitions.This limitation follows from their lack of intrinsic length scale parameters,crucial for representingmicrostructural features.Theoretical and experimental findings emphasize the critical role of these parameters on small scales.This review thoroughly examines various strain gradient elasticity(SGE)theories commonly employed in literature to capture these size-dependent effects on the elastic response.Given the complexity arising from numerous SGE frameworks available in the literature,including first-and second-order gradient theories,we conduct a comprehensive and comparative analysis of common SGE models.This analysis highlights their unique physical interpretations and compares their effectiveness in modeling the size-dependent behavior of low-dimensional structures.A brief discussion on estimating additional material constants,such as intrinsic length scales,is also included to improve the practical relevance of SGE.Following this theoretical treatment,the review covers analytical and numerical methods for solving the associated higher-order governing differential equations.Finally,we present a detailed overview of strain gradient applications in multiscale andmultiphysics response of solids.Interesting research on exploring the relevance of SGE for reduced-order modeling of complex macrostructures,a universal multiphysics coupling in low-dimensional structures without being restricted to limited material symmetries(as in the case of microstructures),is also presented here for interested readers.Finally,we briefly discuss alternative nonlocal elasticity approaches(integral and integro-differential)for incorporating size effects,and conclude with some potential areas for future research on strain gradients.This review aims to provide a clear understanding of strain gradient theories and their broad applicability beyond classical elasticity. 展开更多
关键词 Strain gradient nonlocal elasticity size effects MICROSTRUCTURE multiphysics coupling
在线阅读 下载PDF
Deep learning approach for morphology classification and particle sizing of industrial methanol-to-olefins(MTO)catalyst
4
作者 Qingyu Wang Duiping Liu +3 位作者 Yong Lu Jibin Zhou Xiangang Ma Mao Ye 《Chinese Journal of Chemical Engineering》 2025年第8期1-10,共10页
Accurately acquiring catalyst size and morphology is essential for supporting catalytic reaction process design and optimal control. We report an intelligent catalyst sizing and morphological classification method bas... Accurately acquiring catalyst size and morphology is essential for supporting catalytic reaction process design and optimal control. We report an intelligent catalyst sizing and morphological classification method based on the Mask-RCNN framework. A dataset of 9880 high-resolution images was captured by using a self-made fiber-optic endoscopic system for 13 kinds of silicoaluminophosphate-34 (SAPO-34) catalyst samples with different coke. Then there were approximately 877881 individual particles extracted from this dataset by our AI-based particle recognition algorithm. To clearly describe the morphology of irregular particles, we proposed a hybrid classification criterion that combines five different parameters, which are deformity, circularity, roundness, aspect ratio, and compactness. Therefore, catalyst morphology can be classified into two categories with four types. The first category includes regular types, such as the spherical, ellipsoidal, and rod-shaped types. And all the irregular types fall into the second category. The experimental results showed that a catalyst particle tends to be larger when its coke deposition increased. Whereas particle morphology remained primarily spherical and ellipsoidal, the ratio of each type varied slightly according to its coke. Our findings illustrate that this is a promising approach to be developing intelligent instruments for catalyst particle sizing and classification. 展开更多
关键词 CATALYST Particle morphology Neural networks Particle size distribution Irregular particles
在线阅读 下载PDF
INTEGRATION SHAPE AND SIZING OPTIMIZATION OF COMPOSITE WING STRUCTURE BASED ON RESPONSE SURFACE METHOD 被引量:7
5
作者 王伟 杨伟 常楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期94-100,共7页
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl... An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting. 展开更多
关键词 composite structures shape optimization WINGS sizing optimization response surface method
在线阅读 下载PDF
Hydrogen Energy Storage System:Review on Recent Progress 被引量:1
6
作者 MilleniumWong Hadi Nabipour Afrouzi 《Energy Engineering》 EI 2025年第1期1-39,共39页
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com... A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use. 展开更多
关键词 Hydrogen energy storage system VOSViewer DESIGN REVIEW sizing
在线阅读 下载PDF
A Novel Approach to Synthesizing Porous ZnO Films: Inorganic Chelating Sol-Gel Method 被引量:1
7
作者 杨立荣 靳正国 +1 位作者 步邵静 程志捷 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第3期241-246,共6页
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface... Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV. 展开更多
关键词 porous ZnO film inorganic chelating sol-gel method pore size distribution PROPERTIES
在线阅读 下载PDF
Effect of Grain Size on Nano-scratching Behavior of Polycrystallineγ-TiAl Alloy via Molecular Dynamics Simulation 被引量:1
8
作者 Cao Hui Xu Hanzong +3 位作者 Li Haipeng Li Haiyan Chen Tao Feng Ruicheng 《稀有金属材料与工程》 北大核心 2025年第3期569-580,共12页
The scratching mechanism of polycrystallineγ-TiAl alloy was investigated at the atomic scale using the molecular dynamics method,with a focus on the influence of different grain sizes.The analysis encompassed tribolo... The scratching mechanism of polycrystallineγ-TiAl alloy was investigated at the atomic scale using the molecular dynamics method,with a focus on the influence of different grain sizes.The analysis encompassed tribological characteristics,scratch morphology,subsurface defect distribution,temperature variations,and stress states during the scratching process.The findings indicate that the scratch force,number of recovered atoms,and pile-up height exhibit abrupt changes when the critical size is 9.41 nm due to the influence of the inverse Hall-Petch effect.Variations in the number of grain boundaries and randomness of grain orientation result in different accumulation patterns on the scratch surface.Notably,single crystal materials and those with 3.73 nm in grain size display more regular surface morphology.Furthermore,smaller grain size leads to an increase in average coefficient of friction,removed atoms number,and wear rate.While it also causes higher temperatures with a larger range of distributions.Due to the barrier effect of grain boundaries,smaller grains exhibit reduced microscopic defects.Additionally,average von Mises stress and hydrostatic compressive stress at the indenter tip decrease as grain size decreases owing to grain boundary obstruction. 展开更多
关键词 grain size nano-scratching surface generation subsurface defect polycrystallineγ-TiAl alloy
原文传递
Machine learning-assisted microfluidic approach for broad-spectrum liposome size control 被引量:1
9
作者 Yujie Jia Xiao Liang +6 位作者 Li Zhang Jun Zhang Hajra Zafar Shan Huang Yi Shi Jian Chen Qi Shen 《Journal of Pharmaceutical Analysis》 2025年第6期1238-1248,共11页
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide... Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications. 展开更多
关键词 Liposomes MICROFLUIDICS Liposomal size SHM Machine learning
在线阅读 下载PDF
Progress in Flexoelectric Effect Research and Related Applications 被引量:1
10
作者 Pengwen Guo Mengmeng Jia +3 位作者 Di Guo Tianling Ren Zhong Lin Wang Junyi Zhai 《SmartSys》 2025年第1期39-46,共8页
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals... The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems. 展开更多
关键词 electric polarization flexoelectric effect flexotronics size effect strain gradient
在线阅读 下载PDF
Phase field modeling of the aspect ratio dependent functional properties of NiTi shape memory alloys with different grain sizes 被引量:1
11
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Sinica》 2025年第1期22-41,共20页
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size... It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors. 展开更多
关键词 Phase field modeling NITI Aspect ratio Grain size Functional property
原文传递
Geometric size and forming force prediction in incremental flanging:A new analytical model 被引量:1
12
作者 Chong TIAN Dawei ZHANG +1 位作者 Guangcan YANG Shengdun ZHAO 《Chinese Journal of Aeronautics》 2025年第2期519-540,共22页
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca... A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained. 展开更多
关键词 Incremental flanging Analytical model Strain characteristic Geometric size Forming force
原文传递
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
13
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
A Decentralized and TCAM-Aware Failure Recovery Model in Software Defined Data Center Networks
14
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期1087-1107,共21页
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s... Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments. 展开更多
关键词 Software defined networking failure detection failure recovery RESTORATION protection TCAM size
在线阅读 下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
15
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
在线阅读 下载PDF
Effect of Zirconia Content on Microstructure and Abrasive Wear Properties of TZM Alloy
16
作者 Yang Yajie Xu Liujie +3 位作者 Fang Hong Li Zhou Li Xiuqing Wei Shizhong 《稀有金属材料与工程》 北大核心 2025年第8期1962-1970,共9页
The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy wa... The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy was conducted under the conditions of 10,15,and 20 N and abrasive particle sizes of 7,11,18,and 38μm.The results show that the added ZrO_(2)particles in TZM alloy are mainly distributed at the grain boundaries.The grains of TZM alloy containing 1.5wt%ZrO_(2)are significantly refined,and the hardness is increased by 16%.The wear test results show that TZM alloy containing 1.5wt%ZrO_(2)has the lowest mass loss rate and excellent wear resistance under all loads and abrasive sizes,and the wear performance is improved by 12%.The ZrO_(2)with high hardness becomes the main bearer of the load,and as the second-phase,it hinders the abrasive particles from entering the matrix and effectively resists the scratch of the abrasive particles,which is the main reason for the excellent wear resistance. 展开更多
关键词 TZM alloy zirconium oxide abrasive wear grain size
原文传递
Graphene Size Dependent Hardness and Strengthening Mechanisms of Cu/Graphene Composites:A Molecular Dynamics Study
17
作者 Zhang Shuang Chang Guo +5 位作者 Li Liang Li Xiang Peng Haoran Chen Kaiyun Yang Nan Huo Wangtu 《稀有金属材料与工程》 北大核心 2025年第1期17-26,共10页
The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechan... The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness. 展开更多
关键词 Cu/graphene composites graphene size HARDNESS strengthening mechanism molecular dynamics
原文传递
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
18
作者 ZHU Huimei LIU Yu LI Hui 《材料导报》 北大核心 2025年第20期108-114,共7页
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ... Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA. 展开更多
关键词 alkali-activated fly ash binder microwave-curing particle size compressive strength
在线阅读 下载PDF
Effect of GPLs on Grain Size of WC in WC-Co-GPLs Cemented Carbides:Refinement Mechanism
19
作者 Li Meng Wei Dong +4 位作者 Hu Huixuan Wu Weiguo Zhong Sisi Gong Manfeng Zhang Chengyu 《稀有金属材料与工程》 北大核心 2025年第7期1727-1732,共6页
The influence of graphene platelets(GPLs)on the WC grain size of WC-Co-GPLs cemented carbide prepared by low-pressure sintering was investigated.The role of GPLs in refining WC grains was explored by characterizing gr... The influence of graphene platelets(GPLs)on the WC grain size of WC-Co-GPLs cemented carbide prepared by low-pressure sintering was investigated.The role of GPLs in refining WC grains was explored by characterizing grain size and phase distribution.Results show that the addition of GPLs leads to significant grain refinement of WC and the more uniform distribution of WC grain size.When the content of GPLs is 0.10wt%,the average WC grain size in the cemented carbide is 0.39μm,which is 32%lower than that in WC-Co.However,the shape of WC grains is almost unaffected,while the mean free path of Co decreases.The grain refinement of WC is attributed to the homogeneous distribution of GPLs between WC/WC and WC/Co grain boundaries,which hinders the solution and precipitation process of WC in liquid phase Co,as well as the migration and growth of WC grains.Additionally,GPLs can serve as heat transfer plates in materials to improve cooling efficiency,thus inhibiting the growth of WC grain. 展开更多
关键词 WC-Co cemented carbide GPLs WC grain size
原文传递
The A_(α)-spectral Radius of Block Graphs with Given Dissociation Number
20
作者 HUANG Peng LI Jianxi 《数学进展》 北大核心 2025年第4期696-708,共13页
For a simple graph G,let A(G)and D(G)be the adjacency matrix and the diagonal degree matrix of G,respectively.[Appl.Anal.Discrete Math.,2017,11(1):81-107]defined the matrix A_(α)(G)of G as A_(α)(G)=αD(G)(1-α)A(G)... For a simple graph G,let A(G)and D(G)be the adjacency matrix and the diagonal degree matrix of G,respectively.[Appl.Anal.Discrete Math.,2017,11(1):81-107]defined the matrix A_(α)(G)of G as A_(α)(G)=αD(G)(1-α)A(G),α∈[0,1].The Aa-spectral radius is the largest eigenvalue of A_(α)(G).Let G_(n,β) be the set graphs with order n and dissociation numberβ.In this paper,we identify the b with maximal A_(α)-spectral radius among all graphs in G_(n,β). 展开更多
关键词 A_(α)-spectral radius block graph SIZE dissociation number
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部