The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To a...The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.展开更多
The back frame structure of a large radio telescope is an important component supporting the reflecting surface,which is directly related to the surface precision.Its optimal design is of key significance for ensuring...The back frame structure of a large radio telescope is an important component supporting the reflecting surface,which is directly related to the surface precision.Its optimal design is of key significance for ensuring the surface precision and reducing structural weight.Two methods are constructed to optimize the cross-section size of the telescope back frame in this paper,the criterion method and the first-order optimization method.The criterion method is based on the Lagrangian multiplier method and Kuhn-Tucker condition.This method first establishes the mathematical model by taking the inner and outer radiuses of the back frame beams as the design variables,the structural weight as the constraint condition,and the structural compliance as the objective function,then derives the optimization criterion.The first-order optimization method takes the inner and outer radiuses of the beams as the design variables,the back frame RMS as the objective function,and the structural weight as the constraint condition.Comparison of RMS,structural stress uniformity and optimization efficiency shows that both algorithms can effectively reduce structural deformation and improve RMS,but the criterion method has relatively better result than the first-order method.展开更多
Triboelectric nanogenerators(TENGs)have emerged as a promising technology to harvest electrical energy from natural motions such as human movement,wind,and water flow.Although TENGs show significant potential in small...Triboelectric nanogenerators(TENGs)have emerged as a promising technology to harvest electrical energy from natural motions such as human movement,wind,and water flow.Although TENGs show significant potential in small-scale applications,developing large-scale TENGs capable of generating high power remains a significant challenge.Several factors that can affect the performance of large-scale TENGs are being investigated to overcome this challenge,including the size and configuration of dielectric materials.This study optimizes dielectrics regarding surface area,thickness,and multicell configuration to improve harvested electrical power density in large-scale TENGs.In the studies,glass fiber was used as the positive dielectric,and multipurpose white silicone was used as the negative dielectric because of their high tribo-potential,durability,and easy accessibility.In the size optimization phase,dielectric thicknesses and surface areas that provide the maximum power density were determined.Subsequently,horizontal and vertical multicell configurations were examined to efficiently integrate size-optimized dielectrics.The results reveal that large-scale TENGs with vertical multicell configurations can achieve high and usable energy density for electronics.The findings provide valuable insight into the development of large-scale TENGs with advanced power generation capabilities.展开更多
The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among ...The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.展开更多
With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including op...With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate...In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.展开更多
Fracture conductivity is a key factor to determine the fracturing effect.Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures.To address challenges asso...Fracture conductivity is a key factor to determine the fracturing effect.Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures.To address challenges associated with the low-permeability reservoirs in the Lufeng Oilfield of the South China Sea—including high heterogeneity,complex lithology,and suboptimal fracturing outcomes—JRC(Joint Roughness Coefficient)was employed to quantitatively characterize the lithological properties of the target formation.A CFD-DEM(Computational Fluid Dynamics-Discrete Element Method)two-way coupling approach was then utilized to construct a fracture channel model that simulates proppant transport dynamics.Theproppant particle size under different lithology was optimized.Theresults show that:(1)In rough fractures,proppant particles exhibit more chaotic migration behavior compared to their movement on smooth surfaces,thereby increasing the risk of fracture plugging;(2)Within the same particle size range,for proppants with mesh sizes of 40/70 or 20/40,fracture conductivity decreases as roughness increases.In contrast,for 30/50 mesh proppants,conductivity initially increases and then decreases with rising roughness;(3)Under identical roughness conditions,the following recommendations apply based on fracture conductivity behavior relative to proppant particle size:When JRC<46,conductivity increases with larger particle sizes,with 20/40 mesh proppant recommended;When JRC>46,conductivity decreases as particle size increases;40/70 mesh proppant is thus recommended to maintain effective conductivity;At JRC=46,conductivity first increases then decreases with increasing particle size,making 30/50mesh the optimal choice.Theresearch findings provide a theoretical foundation for optimizing fracturing designs and enhancing fracturing performance in the field.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a...A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.展开更多
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de...The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.展开更多
This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into t...This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into three categories:(1) direct indices, like the trophic level of species, influenced by stomach sample size directly;(2)indirect indices, like ecology efficiency(EE) of invertebrates, influenced by the multiple prey-predator relationships;and(3) systemic indices, like total system throughout(TST), describing the status of the whole ecosystem. The influences of different stomach sample sizes on these indices were evaluated. The results suggest that systemic indices of the ecosystem model were robust to stomach sample sizes, whereas specific indices related to species were indicated to be with low accuracy and precision when stomach samples were insufficient.The indices became more uncertain when the stomach sample sizes varied for more species. This study enhances the understanding of how the quality of diet composition data influences ecosystem modeling outputs. The results can also guide the design of stomach content analysis for developing ecosystem models.展开更多
Garment online shopping has been accepted by more and more consumers in recent years. In online shopping, a buyer only chooses the garment size judged by his own experience without trying-on, so the selected garment m...Garment online shopping has been accepted by more and more consumers in recent years. In online shopping, a buyer only chooses the garment size judged by his own experience without trying-on, so the selected garment may not be the fittest one for the buyer due to the variety of body's figures. Thus, we propose a method of optimal selection of garment sizes for online shopping based on Analytic Hierarchy Process (AHP). The hierarchical structure model for optimal selection of garment sizes is structured and the fittest garment for a buyer is found by calculating the matching degrees between individual's measurements and the corresponding key-part values of ready-to-wear clothing sizes. In order to demonstrate its feasibility, we provide an example of selecting the fittest sizes of men's bottom. The result shows that the proposed method is useful in online clothing sales application.展开更多
In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficienc...In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficiency. In this research, a new method is proposed to calculate the optimal step size more effectively. Both nonlinear one—dimensional advection equation and two—dimensional inertial wave equation are used to test and compare the influence of different methods of the optimal step size calculations on the iteration steps, as well as the simulation results of 4DVAR processes. It is in evidence that the different methods have different influences. The calculating method is very important to determining whether the iteration is convergent or not and whether the convergence rate is large or small. If the calculating method of optimal step size is properly determined as demonstrated in this paper, then it can greatly enlarge the convergence rate and further greatly decrease the iteration steps. This research is meaningful since it not only makes an important improvement on 4DVAR theory, but also has useful practical application in improving the computational efficiency and saving the computational time. Key words 4DVAR - Optimal step size - Iterative convergence rate This work was supported by the National Natural Science Foundation under grants: 49735180 and 49675259, the “973 Project? CHERES(G 1998040907), the Project of Natural Science Foundation of Jiangsu Province(BK99020), and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars.展开更多
We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting ...We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting the adaptive parameter a go systematic optimum values in the course of the programmed procedure, the convergence is accelerated with a highest speed and the minimum steady-state error is obtained simultaneously. This algorithm may be applied to eliminate other non-steady relevant noises as well.展开更多
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
Rectangular tiles can be laid on a ship's hull for protection, but the sides of the tiles must be adjusted so adjacent tiles will conform to the curvature of the hull.A method for laying tiles along a reference li...Rectangular tiles can be laid on a ship's hull for protection, but the sides of the tiles must be adjusted so adjacent tiles will conform to the curvature of the hull.A method for laying tiles along a reference line was proposed, and an allowable range of displacement for the four vertices of the tile was determined.Deformations of each tile on a specific reference line were then obtained.It was found that the least deformation was required when the tiles were laid parallel to a line with the least curvature.After calculating the mean curvature on the surface, the surface was divided into three layout areas.A set of discrete points following the least deformation of the principal curvatures was obtained.A NURBS interpolation curve was then plotted as the reference line for laying tiles.The optimum size of the tiles was obtained, given the allowable maximum deformation condition.This minimized the number of bolts and the amount of stuffing.A typical aft hull section was selected and divided into three layout areas based on the distribution of curvature.The optimum sizes of rectangular tiles were obtained for every layout area and they were then laid on the surface.In this way the layout of the rectangular tiles could be plotted.展开更多
This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and ...This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and small vehicle are built in this study, respectively. With the operation data of Shanghai Transit Route 55 at peak and off-peak hours, a heuristic algorithm was proposed to solve the problem. The results indicate that the hybrid vehicle size model excels the other two modes both in the total time and total cost. The study verifies the rationality of the strategy of hybrid vehicle size model and highlights the importance of the adaptive vehicle size in dealing with the bus demand fluctuation. The main innovation of the study is that unlike traditional timetables, the arrangement of the scheduling interval and the corresponding bus type or size are both involved in the timetable of hybrid vehicle size bus mode, which will be more effective to solve the problem of passenger demand fluctuation. Findings from this research would provide a new perspective to improve the level of regular bus service.展开更多
To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement h...To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement honeycomb structure(FLAHS)and functional arrangement honeycomb structure(FUAHS)are designed by observing the microstructure of the Gideon beetle,based on the optimal size bio-inspired cells by response surface method(RSM)and particle swarm optimization(PSO)algorithm.According to Euler theory and buckling failure theory,compression deformation properties of bio-inspired structures are explained.Experiments and simulations further verify the accuracy of theoretical analysis results.The results show that energy absorption of FLAHS is,respectively,increased by 26.95%,22.85%,and 121.45%,compared with RAHS,SAHS,and FUAHS.Elastic modulus of FLAHS is 110.37%,110.37%,and 230.56% of RAHS,SAHS,and FUAHS,respectively.FLAHS perfectly inherits crashworthiness and energy absorption properties of the Gideon beetle,and FLAHS has the most stable force.Similarly,RAHS,SAHS,and FUAHS,respectively,inherit mechanical properties of the Gideon beetle top horn,the Gideon beetle middle horn,and the abdomen of the beetle.This method,designing bio-inspired structures with biological functions,can be introduced into the engineering field requiring the special function.展开更多
基金This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan,Grant No.AP19674517.
文摘The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.
文摘The back frame structure of a large radio telescope is an important component supporting the reflecting surface,which is directly related to the surface precision.Its optimal design is of key significance for ensuring the surface precision and reducing structural weight.Two methods are constructed to optimize the cross-section size of the telescope back frame in this paper,the criterion method and the first-order optimization method.The criterion method is based on the Lagrangian multiplier method and Kuhn-Tucker condition.This method first establishes the mathematical model by taking the inner and outer radiuses of the back frame beams as the design variables,the structural weight as the constraint condition,and the structural compliance as the objective function,then derives the optimization criterion.The first-order optimization method takes the inner and outer radiuses of the beams as the design variables,the back frame RMS as the objective function,and the structural weight as the constraint condition.Comparison of RMS,structural stress uniformity and optimization efficiency shows that both algorithms can effectively reduce structural deformation and improve RMS,but the criterion method has relatively better result than the first-order method.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under project number 121M608.
文摘Triboelectric nanogenerators(TENGs)have emerged as a promising technology to harvest electrical energy from natural motions such as human movement,wind,and water flow.Although TENGs show significant potential in small-scale applications,developing large-scale TENGs capable of generating high power remains a significant challenge.Several factors that can affect the performance of large-scale TENGs are being investigated to overcome this challenge,including the size and configuration of dielectric materials.This study optimizes dielectrics regarding surface area,thickness,and multicell configuration to improve harvested electrical power density in large-scale TENGs.In the studies,glass fiber was used as the positive dielectric,and multipurpose white silicone was used as the negative dielectric because of their high tribo-potential,durability,and easy accessibility.In the size optimization phase,dielectric thicknesses and surface areas that provide the maximum power density were determined.Subsequently,horizontal and vertical multicell configurations were examined to efficiently integrate size-optimized dielectrics.The results reveal that large-scale TENGs with vertical multicell configurations can achieve high and usable energy density for electronics.The findings provide valuable insight into the development of large-scale TENGs with advanced power generation capabilities.
基金supported by the Fundamental Research Funds of the Chinese Academy of Forestry(CAFYBB2020QB004)the National Natural Science Foundation of China(41971038,32171559,U20A2085,and U21A2005).
文摘The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.
文摘With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金the National Natural Science Foundation of China(Grant No.51305372)the Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City(Grant No.TCIMI201803)the Project of the 2011 Collaborative Innovation Center of Fujian Province(Grant No.2016BJC019).
文摘In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.
基金funded by China NationalOffshore Oil Corporation(CNOOC)14th Five-Year Plan Major Science and Technology Project:Research on Integrated Geological Engineering Technology for Fracturing and Development of Offshore Low-Permeability Reservoirs(Grant NO.KJGG2022-0701).Mao Jiang,Chengyong Peng,JiangshuWu and Xuesong Xing.https://www.cnooc.com.cn.
文摘Fracture conductivity is a key factor to determine the fracturing effect.Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures.To address challenges associated with the low-permeability reservoirs in the Lufeng Oilfield of the South China Sea—including high heterogeneity,complex lithology,and suboptimal fracturing outcomes—JRC(Joint Roughness Coefficient)was employed to quantitatively characterize the lithological properties of the target formation.A CFD-DEM(Computational Fluid Dynamics-Discrete Element Method)two-way coupling approach was then utilized to construct a fracture channel model that simulates proppant transport dynamics.Theproppant particle size under different lithology was optimized.Theresults show that:(1)In rough fractures,proppant particles exhibit more chaotic migration behavior compared to their movement on smooth surfaces,thereby increasing the risk of fracture plugging;(2)Within the same particle size range,for proppants with mesh sizes of 40/70 or 20/40,fracture conductivity decreases as roughness increases.In contrast,for 30/50 mesh proppants,conductivity initially increases and then decreases with rising roughness;(3)Under identical roughness conditions,the following recommendations apply based on fracture conductivity behavior relative to proppant particle size:When JRC<46,conductivity increases with larger particle sizes,with 20/40 mesh proppant recommended;When JRC>46,conductivity decreases as particle size increases;40/70 mesh proppant is thus recommended to maintain effective conductivity;At JRC=46,conductivity first increases then decreases with increasing particle size,making 30/50mesh the optimal choice.Theresearch findings provide a theoretical foundation for optimizing fracturing designs and enhancing fracturing performance in the field.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金Supported by National Science and Technology Major Project(Grant No.2015ZX04014021)
文摘A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.
文摘The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
基金The National Natural Science Foundation of China under contract No.31772852the Fundamental Research Funds for the Central Universities under contract No.201612004。
文摘This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into three categories:(1) direct indices, like the trophic level of species, influenced by stomach sample size directly;(2)indirect indices, like ecology efficiency(EE) of invertebrates, influenced by the multiple prey-predator relationships;and(3) systemic indices, like total system throughout(TST), describing the status of the whole ecosystem. The influences of different stomach sample sizes on these indices were evaluated. The results suggest that systemic indices of the ecosystem model were robust to stomach sample sizes, whereas specific indices related to species were indicated to be with low accuracy and precision when stomach samples were insufficient.The indices became more uncertain when the stomach sample sizes varied for more species. This study enhances the understanding of how the quality of diet composition data influences ecosystem modeling outputs. The results can also guide the design of stomach content analysis for developing ecosystem models.
基金The Programfor New Century Excellent Talents in University from Ministry of Education of China(No.NCET-04-415)the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China(No.706024)International Science Cooperation Foundation of Shanghai,China(No.061307041)
文摘Garment online shopping has been accepted by more and more consumers in recent years. In online shopping, a buyer only chooses the garment size judged by his own experience without trying-on, so the selected garment may not be the fittest one for the buyer due to the variety of body's figures. Thus, we propose a method of optimal selection of garment sizes for online shopping based on Analytic Hierarchy Process (AHP). The hierarchical structure model for optimal selection of garment sizes is structured and the fittest garment for a buyer is found by calculating the matching degrees between individual's measurements and the corresponding key-part values of ready-to-wear clothing sizes. In order to demonstrate its feasibility, we provide an example of selecting the fittest sizes of men's bottom. The result shows that the proposed method is useful in online clothing sales application.
文摘In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficiency. In this research, a new method is proposed to calculate the optimal step size more effectively. Both nonlinear one—dimensional advection equation and two—dimensional inertial wave equation are used to test and compare the influence of different methods of the optimal step size calculations on the iteration steps, as well as the simulation results of 4DVAR processes. It is in evidence that the different methods have different influences. The calculating method is very important to determining whether the iteration is convergent or not and whether the convergence rate is large or small. If the calculating method of optimal step size is properly determined as demonstrated in this paper, then it can greatly enlarge the convergence rate and further greatly decrease the iteration steps. This research is meaningful since it not only makes an important improvement on 4DVAR theory, but also has useful practical application in improving the computational efficiency and saving the computational time. Key words 4DVAR - Optimal step size - Iterative convergence rate This work was supported by the National Natural Science Foundation under grants: 49735180 and 49675259, the “973 Project? CHERES(G 1998040907), the Project of Natural Science Foundation of Jiangsu Province(BK99020), and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting the adaptive parameter a go systematic optimum values in the course of the programmed procedure, the convergence is accelerated with a highest speed and the minimum steady-state error is obtained simultaneously. This algorithm may be applied to eliminate other non-steady relevant noises as well.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
基金Supported by Technological Support Project of Equipment Pre-research under Grant No.62201080202
文摘Rectangular tiles can be laid on a ship's hull for protection, but the sides of the tiles must be adjusted so adjacent tiles will conform to the curvature of the hull.A method for laying tiles along a reference line was proposed, and an allowable range of displacement for the four vertices of the tile was determined.Deformations of each tile on a specific reference line were then obtained.It was found that the least deformation was required when the tiles were laid parallel to a line with the least curvature.After calculating the mean curvature on the surface, the surface was divided into three layout areas.A set of discrete points following the least deformation of the principal curvatures was obtained.A NURBS interpolation curve was then plotted as the reference line for laying tiles.The optimum size of the tiles was obtained, given the allowable maximum deformation condition.This minimized the number of bolts and the amount of stuffing.A typical aft hull section was selected and divided into three layout areas based on the distribution of curvature.The optimum sizes of rectangular tiles were obtained for every layout area and they were then laid on the surface.In this way the layout of the rectangular tiles could be plotted.
基金sponsored in part by the National Natural Science Foundation of China(No.71101109)the Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education,Changsha University of Science & Technology(No.kfj120108)
文摘This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and small vehicle are built in this study, respectively. With the operation data of Shanghai Transit Route 55 at peak and off-peak hours, a heuristic algorithm was proposed to solve the problem. The results indicate that the hybrid vehicle size model excels the other two modes both in the total time and total cost. The study verifies the rationality of the strategy of hybrid vehicle size model and highlights the importance of the adaptive vehicle size in dealing with the bus demand fluctuation. The main innovation of the study is that unlike traditional timetables, the arrangement of the scheduling interval and the corresponding bus type or size are both involved in the timetable of hybrid vehicle size bus mode, which will be more effective to solve the problem of passenger demand fluctuation. Findings from this research would provide a new perspective to improve the level of regular bus service.
基金funded by the National Key R&D Program of China(No.2018YFB1105100)the National Natural Science Foundation of China(No.51975246)+6 种基金Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS134)the Ascl-zytsxm(202013)the Open Project Program of Key Laboratory for Cross-Scale Micro and Nano Manufacturing,Minstry of Education,Changchun University of Science and Technology(CMNM-KF202109)the Program for JLU Science and Technology Innovative Research Team(No.2019TD-34)Jilin Scientific and Technological Development Program(20200404204YY)Interdisciplinary Research Fund for Doctoral Postgraduates of Jilin University(No.101832020DJX052)Interdisciplinary Cultivation Project for Young Teachers and Students(No.415010300078).
文摘To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement honeycomb structure(FLAHS)and functional arrangement honeycomb structure(FUAHS)are designed by observing the microstructure of the Gideon beetle,based on the optimal size bio-inspired cells by response surface method(RSM)and particle swarm optimization(PSO)algorithm.According to Euler theory and buckling failure theory,compression deformation properties of bio-inspired structures are explained.Experiments and simulations further verify the accuracy of theoretical analysis results.The results show that energy absorption of FLAHS is,respectively,increased by 26.95%,22.85%,and 121.45%,compared with RAHS,SAHS,and FUAHS.Elastic modulus of FLAHS is 110.37%,110.37%,and 230.56% of RAHS,SAHS,and FUAHS,respectively.FLAHS perfectly inherits crashworthiness and energy absorption properties of the Gideon beetle,and FLAHS has the most stable force.Similarly,RAHS,SAHS,and FUAHS,respectively,inherit mechanical properties of the Gideon beetle top horn,the Gideon beetle middle horn,and the abdomen of the beetle.This method,designing bio-inspired structures with biological functions,can be introduced into the engineering field requiring the special function.