A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the forc...A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.展开更多
This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decou...This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are ...A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are constructed and integrated into complete wireless sensors and base stations. The communication protocol is designed and the fusion arithmetic of the temperature and acceleration is embedded in the wireless sensor node so that the measured acceleration values are more accurate. Measures are adopted to finish energy optimization, which is an important issue for a wireless sensor network. The test is perfonned on an offshore platform model, and the experimental results are given to show the feasibility of the designed wireless sensor network .展开更多
In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sen...In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.展开更多
A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor ...A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.展开更多
Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative e...Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.展开更多
A novel orthogonal-parallel six-axis force/torque sensor is studied based on a modified Stewart platform architecture,and the optimal design and experiment research of the sensor are discussed.Firstly,the model of ort...A novel orthogonal-parallel six-axis force/torque sensor is studied based on a modified Stewart platform architecture,and the optimal design and experiment research of the sensor are discussed.Firstly,the model of orthogonal parallel six-axis force/torque sensor based on improved Stewart platform architecture and its static mathematical model are proposed.Secondly,according to the actual working condition of the sensor,the sensor is optimized and the optimal solution is obtained.Then,the experimental prototype and calibration system is developed.Finally,the superiority of the sensor structure and the effectiveness of the optimization method are verified by calibration experiments.The results of the proposed method are useful for the further research and application of the orthogonal-parallel six-axis force/torque sensor.展开更多
This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic s...This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.展开更多
Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a b...Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
基金supported by the Open Foundation of Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics (No.kfjj20170512)the National Natural Science Foundation of China(No. 51175263)
文摘A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.
基金Supported by the National Natural Science Foundation of China ( No. 60275032 ) and the Supported bv the High Technology Research and Development Programme of China ( No. 2003AA404220).
文摘This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金Supported by the High Technology Research and Development Programme of China ( No. 2003AA602230) and the National Natural Science Foundation of China(No. 50308007).
文摘A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are constructed and integrated into complete wireless sensors and base stations. The communication protocol is designed and the fusion arithmetic of the temperature and acceleration is embedded in the wireless sensor node so that the measured acceleration values are more accurate. Measures are adopted to finish energy optimization, which is an important issue for a wireless sensor network. The test is perfonned on an offshore platform model, and the experimental results are given to show the feasibility of the designed wireless sensor network .
基金Supported by the National Natural Science Foundation of China(No.51505124)the Natural Science Foundation of Hebei Province(No.E2016209312)the Foster Fund Projects of North China University of Science and Technology(No.JP201505)
文摘In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Nos. 51775483 and 51275447)the Research Innovation Program for College Graduates of Jiangsu Province(No.SJLX_0589)
文摘A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.
基金funded by the National Natural Science Foundation of China(Grant No.11502118).
文摘Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.
基金Supported by the National Natural Science Foundation of China(No.51505124)Foster Fund Projects of North China University of Science and Technology(No.JP201505)the Science and Technology Research Project of Hebei Province(No.ZD2020151).
文摘A novel orthogonal-parallel six-axis force/torque sensor is studied based on a modified Stewart platform architecture,and the optimal design and experiment research of the sensor are discussed.Firstly,the model of orthogonal parallel six-axis force/torque sensor based on improved Stewart platform architecture and its static mathematical model are proposed.Secondly,according to the actual working condition of the sensor,the sensor is optimized and the optimal solution is obtained.Then,the experimental prototype and calibration system is developed.Finally,the superiority of the sensor structure and the effectiveness of the optimization method are verified by calibration experiments.The results of the proposed method are useful for the further research and application of the orthogonal-parallel six-axis force/torque sensor.
文摘This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.
基金Funded by the National Natural Science Foundation of China (No. 60376032 and No. 90406024) and the Key Teacher Foundation of Chongqing University.
文摘Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.