期刊文献+
共找到34,918篇文章
< 1 2 250 >
每页显示 20 50 100
Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction
1
作者 Zhao Li Huimin Yang +1 位作者 Wenjing Cheng Lin Tian 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期92-101,共10页
Catalysts can significantly promote the reaction dynamics and are therefore considered crucial components for achieving high electrochemical energy conversion efficiency.However,the active sites of the catalysts,parti... Catalysts can significantly promote the reaction dynamics and are therefore considered crucial components for achieving high electrochemical energy conversion efficiency.However,the active sites of the catalysts,particularly for nano-level and atomic-level catalysts commonly undergo reconstruction under practical applications.Therefore,obtaining an in-depth and systematic understanding on the real active sites through in situ/operando characterization techniques is a prerequisite for establishing the structureperformance relationship and guiding the future design of more efficient electrocatalysts.Herein,we summarize the recent progress of in situ/operando characterization techniques for identifying the nature of active sites of electrocatalysts when used in electrocatalytic energy conversion reaction.Specifically,our focus lies in the fundamental principles of various in situ/operando characterization techniques,with particular emphasis on their applications for electrocatalytic reactions.Beyond that,the challenges and perspective insights are also added in the final section to highlight the future direction of this important field. 展开更多
关键词 In situ techniques ELECTROCATALYSIS Active sites Energy conversion
原文传递
Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization 被引量:8
2
作者 Lujie Jia Jian Wang +16 位作者 Shuaiyang Ren Guoxi Ren Xiang Jin Licheng Kao Xuefei Feng Feipeng Yang Qi Wang Ludi Pan Qingtian Li Yi-sheng Liu Yang Wu Gao Liu Jun Feng Shoushan Fan Yifan Ye Jinghua Guo Yuegang Zhang 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期222-228,共7页
The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur(Li/S)cells.A comprehensive understanding of the shuttle-related sulfur speciation and diffusi... The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur(Li/S)cells.A comprehensive understanding of the shuttle-related sulfur speciation and diffusion process is vital for addressing this issue.Herein,we employed in situ/operando X-ray absorption spectroscopy(XAS)to trace the migration of polysulfides across the Li/S cells by precisely monitoring the sulfur chemical speciation at the cathodic electrolyte-separator and electrolyte-anode interfaces,respectively,in a real-time condition.After we adopted a shuttle-suppressing strategy by introducing an electrocatalytic layer of twinborn bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix(BSOC),we found the Li/S cell showed greatly improved sulfur utilization and longer life span.The operando S Kedge XAS results revealed that the BSOC modification was bi-functional:trapping polysulfides and catalyzing conversion of sulfur species simultaneously.We elucidated that the polysulfide trapping-and-catalyzing effect of the BSOC electrocatalytic layer resulted in an effective lithium anode protection.Our results could offer potential stratagem for designing more advanced Li/S cells. 展开更多
关键词 in situ/operando lithium/sulfur cell shuttle effect sulfur speciation X-ray absorption spectroscopy
在线阅读 下载PDF
In Situ/Operando(Soft) X-ray Spectroscopy Study of Beyond Lithium-ion Batteries 被引量:1
3
作者 Feipeng Yang Xuefei Feng +4 位作者 Yi-Sheng Liu Li Cheng Kao Per-Anders Glans Wanli Yang Jinghua Guo 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期139-157,共19页
The lightweight,rechargeable lithium-ion battery is one of the dominant energy storage devices globally in portable electronics due to its high energy density,no memory effect,wide operating voltage,lightweight,and go... The lightweight,rechargeable lithium-ion battery is one of the dominant energy storage devices globally in portable electronics due to its high energy density,no memory effect,wide operating voltage,lightweight,and good charge efficiency.However,due to safety concerns,the depletion of lithium reserves,and the corresponding increase of cost,an alternative battery system becomes more and more desirable.To develop alternative battery systems with low cost and high material abundance,for example,sodium,magnesium,zinc,and calcium,it is important to understand the chemical and electronic structure of materials.Soft X-ray spectroscopy,for example,X-ray absorption spectroscopy(XAS),X-ray emission spectroscopy(XES),and resonant inelastic soft X-ray scattering(RIXS),is an element-specific technique with sensitivity to the local chemical environment and structural order of the element of interest.Modern soft X-ray systems enable operando experiments that can be applied to amorphous and crystalline samples,making it a powerful tool for studying the electronic and structural changes in electrode and electrolyte species.In this article,the application of in situ/operando(soft)X-ray spectroscopy in beyond lithium-ion batteries is reviewed to demonstrate how such spectroscopic characterizations could facilitate the interpretation of interfacial phenomena under in situ/operando condition and subsequent development of the beyond lithium-ion batteries. 展开更多
关键词 (soft)X-ray spectroscopy beyond lithium-ion battery in situ/operando interface
在线阅读 下载PDF
In-situ/operando characterization techniques in lithium-ion batteries and beyond 被引量:8
4
作者 Haoyu Li Shaohua Guo Haoshen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期191-211,I0005,共22页
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica... Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research. 展开更多
关键词 In-situ/operando Characterization techniques Secondary batteries
在线阅读 下载PDF
In-situ/operando characterization techniques for organic semiconductors and devices 被引量:1
5
作者 Sai Jiang Qinyong Dai +1 位作者 Jianhang Guo Yun Li 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期13-23,共11页
The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to g... The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to gain an in-depth understanding of the film growth process, electronic states, and dynamic structure-property relationship under realistic operation conditions, which can be obtained by in-situ/operando characterization techniques for organic devices. Here, the up-todate developments in the in-situ/operando optical, scanning probe microscopy, and spectroscopy techniques that are employed for studies of film morphological evolution, crystal structures, semiconductor-electrolyte interface properties, and charge carrier dynamics are described and summarized. These advanced technologies leverage the traditional static characterizations into an in-situ and interactive manipulation of organic semiconducting films and devices without sacrificing the resolution, which facilitates the exploration of the intrinsic structure-property relationship of organic materials and the optimization of organic devices for advanced applications. 展开更多
关键词 in-situ/operando characterization organic semiconductors structure-property relationship
在线阅读 下载PDF
Unraveling the catalytic redox mechanism of lithium-sulfur batteries through advanced in-situ/operando characterizations
6
作者 Pan Zeng Cheng Yuan +5 位作者 Bin Su Genlin Liu Jiechang Gao Kun Yang Qingyuan Wang Liang Zhang 《Science China Chemistry》 2025年第5期1810-1827,共18页
Accelerating the redox conversion of lithium polysulfides(Li PSs)with electrocatalysts has been regarded as an effective avenue to surmount the shuttle effect and realize high-performance lithium-sulfur(Li-S)batteries... Accelerating the redox conversion of lithium polysulfides(Li PSs)with electrocatalysts has been regarded as an effective avenue to surmount the shuttle effect and realize high-performance lithium-sulfur(Li-S)batteries.However,the complicated reaction process,especially the real-time evolution of sulfur-containing species and electrocatalysts under working conditions,has brought great difficulties in the explicit understanding of reaction mechanism of Li-S batteries,thereby severely hampering the design of highly efficient electrocatalysts.Therefore,a crucial prerequisite for correctly identifying the reaction mechanism is an in-depth analysis of the dynamic evolution of reaction intermediates and their structure-performance relationships.In this review,we comprehensively summarized the most recent progress in the dynamic behaviors of Li PSs and electrocatalysts of Li-S batteries under working conditions in conjunction with closely related in-situ/operando characterizations to recognize the realtime evolution of phase,composition,and atomic/electronic structure,thereby unraveling the corresponding catalytic mechanism.In addition,the major challenges and unexplored issues of catalytic conversion of Li PSs were summarized and discussed,aiming to provide perspectives into the development of highly efficient electrocatalysts in Li-S chemistry.Based on this review,we believe that reasonable regulation of reconstruction behaviors can achieve satisfactory electrocatalysts with high catalytic activity,accelerating the development of green energy. 展开更多
关键词 lithium-sulfur batteries sulfur redox mechanism in-situ/operando characterization electrocatalyst
原文传递
Advances in in situ/operando techniques for catalysis research:enhancing insights and discoveries
7
作者 Linfeng Chen Xinzhi Ding +4 位作者 Zheren Wang Shutao Xu Qike Jiang Chaochao Dun Jeffrey J.Urban 《Surface Science and Technology》 2024年第1期115-137,共23页
Catalysis research has witnessed remarkable progress with the advent of in situ and operando techniques.These methods enable the study of catalysts under actual operating conditions,providing unprecedented insights in... Catalysis research has witnessed remarkable progress with the advent of in situ and operando techniques.These methods enable the study of catalysts under actual operating conditions,providing unprecedented insights into catalytic mechanisms and dynamic catalyst behavior.This review discusses key in situ techniques and their applications in catalysis research.Advances in in situ electron microscopy allow direct visualization of catalysts at the atomic scale under reaction conditions.In situ spectroscopy techniques like X-ray absorption spectroscopy and nuclear magnetic resonance spectroscopy can track chemical states and reveal transient intermediates.Synchrotron-based techniques offer enhanced capabilities for in situ studies.The integration of in situ methods with machine learning and computational modeling provides a powerful approach to accelerate catalyst optimization.However,challenges remain regarding radiation damage,instrumentation limitations,and data interpretation.Overall,continued development of multi-modal in situ techniques is pivotal for addressing emerging challenges and opportunities in catalysis research and technology. 展开更多
关键词 CATALYSIS In situ/operando techniques Machine learning
在线阅读 下载PDF
Optimization-based conformal path planning for in situ bioprinting during complex skin defect repair 被引量:1
8
作者 Wenxiang Zhao Chuxiong Hu +3 位作者 Yunan Wang Shize Lin Ze Wang Tao Xu 《Bio-Design and Manufacturing》 2025年第1期1-19,I0001,共20页
The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving... The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes. 展开更多
关键词 In situ bioprinting Path planning Robot control Skin injury repair
在线阅读 下载PDF
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia 被引量:1
9
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY Nitrate reduction In situ XPS
在线阅读 下载PDF
Experimental Observing Damage Evolution in Cement Pastes Exposed to External Sulfate Attack by in situ X-ray Computed Tomography
10
作者 WU Min CAO Kailei +4 位作者 XIAO Weirong YU Zetai CAO Jierong DING Qingjun LI Jinhui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期164-170,共7页
The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an ... The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution. 展开更多
关键词 CONCRETE external sulfate attack damage evolution situ X-ray computed tomography
原文传递
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method 被引量:1
11
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field Inversion method The bubbling method Nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries
12
作者 Koji Hiraoka Kazuo Yamamoto +2 位作者 Takeshi Kobayashi Tetsuo Sakamoto Shiro Seki 《Energy & Environmental Materials》 2025年第2期34-43,共10页
Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems,but extremely complicated reactions are involved.Because these complex phenomena are als... Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems,but extremely complicated reactions are involved.Because these complex phenomena are also bottlenecks for the establishment of all-sol id-state batteries(ASSB),we conducted multi-scale analysis using combined multi-measurement techniques,to directly observe charge/discharge reactions at hierarchical scales for the oxide-type ASSB using Na as the carrier cation.In particular,all of measurement techniques are applied to cross-section ASSB in the same cell,to complementarily evaluate the elemental distributions and structural changes.From Operando scanning electron microscopy-energy-dispersive X-ray spectroscopy,the Na concentration in the electrode layers changes on the micrometer scale under charge/discharge reactions in the first cycle.Furthermore,Operando Raman spectroscopy reveal changes in the bonding states at the atomic scale in the active material,including changes in reversible structural changes.After cycling the ASSB,the elemental distributions are clearly observed along with the particle shapes and can reveal the Na migration mechanism at the nanometer scale,by time-of-flight secondary ion mass spectrometry.Therefore,this study can provide a fundamental and comprehensive understanding of the charge/discharge mechanism by observing reaction processes at multiple scales. 展开更多
关键词 operando oxide-typeall-solid-statebattery Raman SEM-EDS sodium battery TOF-SIMS
在线阅读 下载PDF
Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine:Synthesis,structures,in situ metal-ligand reactions,and catalytic activity
13
作者 JIA Bofei LIU Zhihao +7 位作者 GAO Zongyuan ZHOU Shuai WU Mengxiang ZHANG Qian ZHANG Xiamei CHEN Shuzhong YANG Xiaohan LI Yahong 《无机化学学报》 北大核心 2025年第5期1020-1036,共17页
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal s... Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH. 展开更多
关键词 copper complexes imidazo[1 5‑a]pyridine in situ metal-ligand reactions ketalization reactions
在线阅读 下载PDF
Single-molecule dynamic dissociation and polymerization-governed in situ repair and encapsulation for high-performance perovskite solar cells
14
作者 Xianfei Cao Yong Qi +6 位作者 Wenshuai Zhao Zengyao Guo Tong Hu Zhengyang Gao Wenchao Han Lei Li Shufen Zhang 《Journal of Energy Chemistry》 2025年第10期923-930,共8页
Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermal... Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermally mediated in situ repair and encapsulation strategy to construct high-performance PSCs by incorporating piperazine thioctic acid salt(TAPPZ)as a dopant into the perovskite precursor Thermally dissociated piperazine(PPZ)from TAPPZ integrates microcrystals to form larger grain(>2000 nm),while the carboxylic acid in thioctic acid(TA)and the amine salt in TAPPZ synergistically passivate and transform PbI_(2),significantly reducing its residual amount.Additionally,TAPPZ undergoe thermal self-crosslinking during perovskite annealing,enabling melt-polymerization to form in situ encapsulation for enhanced water resistance.The TAPPZ-incorporated device achieves a remarkable efficiency of 25.65% and exhibits excellent operational stability,retaining over 90% of its initial efficiency after 2000 h under ambient conditions(20-30℃,20%-30% relative humidity).This study provide new insights into the construction of high-performance perovskite solar cells by designing and synthe sizing multifunctional single molecules for in situ repair and encapsulation of perovskites. 展开更多
关键词 Perovskite solar cells Multifunctional single-molecule Piperazine thioctic acid salt In situ repair In situ encapsulation
在线阅读 下载PDF
High-pressure research on optoelectronic materials:Insights from in situ characterization methods
15
作者 Songhao Guo Yiqiang Zhan Xujie Lü 《Matter and Radiation at Extremes》 2025年第3期10-23,共14页
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt... High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications. 展开更多
关键词 optoelectronic materialswe x ray diffraction nonlinear optics situ characterization methods situ characterization optoelectronic materialswhich absorption spectroscopy optoelectronic materials
在线阅读 下载PDF
Editorial on the research topic:AI-driven fluorescence in situ hybridization test for early cancer detection
16
作者 Simon James Fong Jia-Hui Yu Li Bao 《Medical Data Mining》 2025年第1期1-3,共3页
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance... Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes. 展开更多
关键词 cancer detection early cancer detection ai driven fluorescence situ hybridization fluorescence situ hybri FISH healthcare costs mortality rates
暂未订购
Performance of a deep in situ pressure-preserving coring controller in a high-temperature and ultrahigh-pressure test system
17
作者 Xiaojun Shi Heping Xie +4 位作者 Cong Li Jianan Li Guikang Liu Zhenxi You Mingzhong Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期877-896,共20页
The pressure-preserving controller is the key component of deep in situ pressure-preserving coring(IPP-Coring).With increasing drilling depth,the environmental temperature and pressure increase accordingly.However,due... The pressure-preserving controller is the key component of deep in situ pressure-preserving coring(IPP-Coring).With increasing drilling depth,the environmental temperature and pressure increase accordingly.However,due to the strength and sealing problems of pressure-preserving controllers,the coring pressure is generally lower than 70 MPa.Establishing a high-temperature and ultrahigh-pressure test system is highly important for improving the strength and sealing performance of pressure-preserving controllers.This paper introduces a high-temperature and ultrahigh-pressure test system for deep IPP-Coring controller performance analysis.The device includes six parts:an auxiliary air source system,a pressurization system,a temperature control system,a hydraulic system,a data acquisition and electrical control system,and an ultrahigh-pressure vessel.The test system can reconstruct a 150℃ and 200 MPa in situ environment and simulate and test the movement state of the corer and the stability of the pressure-preserving action trigger of the pressure-preserving controller in the deep IPP-Coring process.To verify the performance of this test system,saddle-shaped pressure-preserving controllers made of four different materials were subjected to pressure tests under normal-temperature and high-temperature conditions.The results showed that the ultimate pressure-bearing capability of the pressure-preserving controller greatly varied between normal-temperature and high-temperature conditions.The pressure-preserving ability and sealing performance of the pressure-preserving controller decreased significantly at high temperature,and the pressure-preserving controller exhibited significantly different sealing failure characteristics due to material differences.This study is important for progressing the extraction and evaluation of deep reservoir resources. 展开更多
关键词 Deep mining In situ pressure-preserving coring(IPP-Coring) Deep in situ conditions Test system development
在线阅读 下载PDF
Efficiency improvement for post-sulfurized CIGS solar cells enabled by in situ Na doping
18
作者 Zeran Gao Yuchen Xiong +7 位作者 Jiawen Wang Shanshan Tian Wanlei Dai Haoyu Xu Xinzhan Wang Chao Gao Yali Sun Wei Yu 《Journal of Energy Chemistry》 2025年第2期324-332,I0007,共10页
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are... Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process. 展开更多
关键词 CIGS SULFURIZATION In situ doping DEFECT CBO
在线阅读 下载PDF
Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet
19
作者 WANG Xinyue ZHANG Aibing +4 位作者 SU Bin DU Dan KONG Linggao TIAN Zheng ZHENG Xiangzhi 《空间科学学报》 北大核心 2025年第3期749-760,共12页
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object... One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water. 展开更多
关键词 neutral gas low energy ions sampling techniques ion sampling techniques investigate space environment main belt comet gas ion analyzer gia situ measurement
在线阅读 下载PDF
Photothermal MXene-embedded tannin-Eu^(3+)particles as in situ bacterial vaccines for accelerating healing of wounds infected by seawater immersion and providing persistent anti-infection effects
20
作者 Zhentao Li Ting Song +3 位作者 Yanpeng Jiao Zijing Zhu Yang Liao Zonghua Liu 《Bio-Design and Manufacturing》 2025年第1期116-133,I0045-I0050,共24页
The low temperature,high salt content,and bacterial composition of a seawater environment can induce severe infections in open wounds,thus impeding wound healing.To date,numerous wound dressings have been developed fo... The low temperature,high salt content,and bacterial composition of a seawater environment can induce severe infections in open wounds,thus impeding wound healing.To date,numerous wound dressings have been developed for injuries and various antibacterial functions.However,ordinary antibacterial strategies could not provide long-term resistance to infections and could not promote wound healing.Here,we proposed a strategy for enhancing resistance to seawater immersion wound infection by killing bacteria and delivering bacterial antigens in situ.Specifically,MXene-embedded tannin-Eu^(3+)(M@TA-Eu)particles were constructed to effectively alleviate injuries infected through seawater immersion and persistently fight infection by forming in situ bacterial vaccines and immune memory.In the particle,the platform composed of TA and Eu3+exhibited provascularization and antigen presentation effects.MXenes with near-infrared photothermal effect were introduced to kill the bacteria,promote the recruitment of antigen presentation cells,and ultimately enhance vaccination efficacy.Experimental results showed that the particles not only effectively accelerated the healing of injuries by relieving wound inflammation and inhibiting bacteria but also produced a potent vaccination by forming in situ bacterial vaccines.Therefore,the M@TA-Eu particles are novel materials for high-grade anti-infection dressing. 展开更多
关键词 MXene TANNIN Wound healing ANTI-INFECTION In situ vaccine
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部