Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ...Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented...In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-ins...Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,...Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.展开更多
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes...Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.展开更多
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g...To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.展开更多
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ...The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density...Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.展开更多
Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspher...Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.展开更多
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom...In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.展开更多
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca...Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.展开更多
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ...The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.展开更多
Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(...Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.12141203,52202083,W2421013)the Natural Science Foundation Project of Shaanxi Province(Grant No.2024JC-YBMS-450)+1 种基金the Sichuan Science and Technology Program(Grant No.2024YFHZ0265)the Open Project of High-end Equipment Advanced Materials and Manufacturing Technology Laboratory(Grant No.2023KFKT0005)。
文摘Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金Supported by the National Key Research and Development Program of Traditional Chinese Medicine Modernization Project,China(No.2023YFC3504000)the Science and Technology Development Project of Jilin Province,China(No.20240404043ZP)the Science and Technology Innovation Cooperation Project of Changchun Science and Technology Bureau and Chinese Academy of Sciences,China(No.23SH14)。
文摘In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金supported by the Khalifa University of Science and Technology internal grants(Nos.2021-CIRA-109,2020-CIRA-007,and 2020-CIRA-024).
文摘Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supported by the National Key Research and Development Program of China(2024YFA1612900)the National Natural Science Foundation of China(Grant No.52103365 and No.12375270)the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2021ZT09L227).
文摘Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金Supported by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.
基金Funded by the National Natural Science Foundation of China(Nos.5226804252468035)。
文摘To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.
基金supported by the National Key R&D Program of China(Nos.2023YFE0108300 and 2023YFD2202103)the National Natural Science Foundation of China(No.32371972)+2 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20221336)Jiangsu Agricultural Science and Technology Independent Innovation Fund,China(No.CX(23)3060)Jiangxi Forestry Bureau Forestry Science and Technology Innovation Special Project,China(No.202240).
文摘The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金supported by the Natural Science Foundation of China(Nos.52125202,52202100,and U24A2065)the Natural Science Foundation of Jiangsu Province(BK20243016)Fundamental Research Funds for the Central Universities,China Postdoctoral Science Foundation(No.2024T171166).
文摘Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.
基金supported by the National Key R&D Program of China(No.2021YFB3501102).
文摘Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.
基金supported by the Natural Science Foundation of Shanxi Province(Nos.20210302123015 and 20210302123035)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2022-4-06)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(No.ZBKF2022030301).
文摘In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.
基金support from the National Natural Science Foundation of China(No:52061040)China Postdoctoral Science Foundation(No:2021M692512)+1 种基金Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province(No:2023CL01)Open Projects of Key Laboratory of Advanced Technologies of Materials,Ministry of Education China,Southwest Jiaotong University(No:KLATM202003).
文摘Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.
基金support from the National Natural Science Foundation of China(22268025,52473083,and 22475176)Key Research and Development Program of Yunnan Province(202403AP140036)+2 种基金Natural Science Basic Research Program of Shaanxi(2024JC-TBZC-04)Applied Basic Research Program of Yunnan Province(202201AT070115 and 202201BE070001-031)supported by the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57).
文摘The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.
基金financially supported by the National Natural Science Foundation of China(Nos.52303090,52403132,52403112,52473083)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0168,2024JC-TBZC-04)+6 种基金the Innovation Capability Support Plan of Shaanxi Province(No.2024ZC-KJXX-022)the Shaanxi Province Key Research and Development Plan Project(No.2023-YBGY-461)the Innovation Capability Support Program of Shaanxi(No.2024RS-CXTD-57)the Natural Science Foundation of Chongqing,China(No.2023NSCQ-MSX2547)the Youth Talent Promotion Project of Shaanxi Science and Technology Association(No.20240426)The Special Scientific Research Plan of Education Department of Shaanxi Province(No.23JK0376)the authors would also like to thank Shiyaniia lab for the sup-port of SEM and XPS tests.
文摘Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.