期刊文献+
共找到517篇文章
< 1 2 26 >
每页显示 20 50 100
MENDED GENETIC BP NETWORK AND APPLICATION TO ROLLING FORCE PREDICTION OF 4-STAND TANDEM COLD STRIP MILL 被引量:3
1
作者 ZhangDazhi SunYikang +1 位作者 WangYanping CaiHengjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期297-300,共4页
In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a p... In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained. 展开更多
关键词 genetic algorithms bp algorithms Neural network Tandem cold strip mill Rolling force prediction
在线阅读 下载PDF
Adaptive prediction system of sintering through point based on self-organize artificial neural network 被引量:5
2
作者 冯其明 李 桃 +1 位作者 范晓慧 姜 涛 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期804-807,共4页
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia... A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[ 展开更多
关键词 sintering process BURNING through POINT prediction artificial NEURAL network bp algorith
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:23
3
作者 LONG Jiangqi LAN Fengchong +1 位作者 CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet... For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet hardness,joint bottom diameter etc.,and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body.Genetic algorithm(GA)is adopted to optimize the back-propagation neural network connection weights.The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters.The training samples'parameters and the corresponding joints'mechanical properties are supplied to the artificial neural network(ANN)for training.The validating samples'experimental data is used for checking up the prediction outputs.The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network.The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints.The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
A benchmark-based method for evaluating hyperparameter optimization techniques of neural networks for surface water quality prediction
4
作者 Xuan Wang Yan Dong +2 位作者 Jing Yang Zhipeng Liu Jinsuo Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第5期13-27,共15页
Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In p... Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In practice,it is common to manually determine hyperparameters in the studies of NNs in water resources tasks.This may result in considerable randomness and require significant computation time;therefore,hyperparameter optimization(HPO)is essential.This study adopted five representatives of the HPO techniques in the surface water quality prediction tasks,including the grid sampling(GS),random search(RS),genetic algorithm(GA),Bayesian optimization(BO)based on the Gaussian process(GP),and the tree Parzen estimator(TPE).For the evaluation of these techniques,this study proposed a method:first,the optimal hyperparameter value sets achieved by GS were regarded as the benchmark;then,the other HPO techniques were evaluated and compared with the benchmark in convergence,optimization orientation,and consistency of the optimized values.The results indicated that the TPE-based BO algorithm was recommended because it yielded stable convergence,reasonable optimization orientation,and the highest consistency rates with the benchmark values.The optimization consistency rates via TPE for the hyperparameters hidden layers,hidden dimension,learning rate,and batch size were 86.7%,73.3%,73.3%,and 80.0%,respectively.Unlike the evaluation of HPO techniques directly based on the prediction performance of the optimized NN in a single HPO test,the proposed benchmark-based HPO evaluation approach is feasible and robust. 展开更多
关键词 Neural networks Hyperparameter optimization Surface water quality prediction Bayes optimization genetic algorithm
原文传递
Research on Railway Passenger Flow Prediction Method Based on GA Improved BP Neural Network 被引量:5
5
作者 Jian Zhang Weihao Guo 《Journal of Computer and Communications》 2019年第7期283-292,共10页
This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its... This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its slow convergence speed and easily falling into local optimal solution of the problem, we propose to improve the time series model of BP neural network by genetic algorithm to predict railway passenger flow. Experimental results show that the improved method has higher prediction accuracy and better nonlinear fitting ability. 展开更多
关键词 RAILWAY PASSENGER Flow prediction bp NEURAL network genetic Algorithm
在线阅读 下载PDF
Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction 被引量:8
6
作者 YANG Yang LI Kai-yang 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期1-9,共9页
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines... The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%. 展开更多
关键词 bp ALGORITHM genetic algorithm NEURAL network STRUCTURE classification Protein SECONDARY STRUCTURE prediction
暂未订购
A method for predicting random vibration response of train-track-bridge system based on GA-BP neural network
7
作者 Jianfeng Mao Yun Zhang +2 位作者 Li Zheng Mansoor Khan Zhiwu Yu 《High-Speed Railway》 2025年第4期305-317,共13页
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw... To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems. 展开更多
关键词 Train-track-bridge system genetic algorithm bp neural network Random response prediction Random parameters
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
8
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测 被引量:1
9
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 bp神经网络 机器学习
原文传递
Development of viscosity model for aluminum alloys using BP neural network 被引量:10
10
作者 Heng-cheng LIAO Yuan GAO +1 位作者 Qi-gui WANG Dan WILSON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2978-2985,共8页
Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of ... Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy. 展开更多
关键词 bp neural network aluminum alloy VISCOSITY genetic algorithm prediction model
在线阅读 下载PDF
GA-BP Air Quality Evaluation Method Based on Fuzzy Theory 被引量:4
11
作者 Ma Ning Jianhe Guan +2 位作者 Pingzeng Liu Ziqing Zhang Gregory M.P.O’Hare 《Computers, Materials & Continua》 SCIE EI 2019年第1期215-227,共13页
With the rapid development of China’s economy,the scale of the city has been continuously expanding,industrial enterprises have been increasing,the discharge of multiple pollutants has reached the top of the world,an... With the rapid development of China’s economy,the scale of the city has been continuously expanding,industrial enterprises have been increasing,the discharge of multiple pollutants has reached the top of the world,and the environmental problems become more and more serious.The air pollution problem is particularly prominent.Air quality has become a daily concern for people.In order to control air pollution,it is necessary to grasp the air quality situation in an all-round way.It is necessary to evaluate air quality.Accurate results of air quality evaluation can help people know more about air quality.In this paper,refers to previous research results and different evaluation methods,combined with artificial neural network,fuzzy theory,genetic algorithm,GA-BP hybrid algorithm based on fuzzy theory is proposed to evaluate air quality.At the same time,for the problem that the two-grade standard of air quality annual evaluation is not suitable for practical application,the four-grade standard for annual air quality evaluation has been proposed,and its practicality has been verified through experiments.By setting contrast experiments and comparing the air quality evaluation model based on standard BP algorithm,it is proved that the fuzzy GA-BP evaluation model is better than the standard BP model,both in efficiency and accuracy. 展开更多
关键词 Air quality evaluation FUZZY THEORY genetic algorithm bp NEURAL network
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
12
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 bp神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于GA-BP的联合收获机小麦含水率检测模型研究 被引量:2
13
作者 安晓飞 代均益 +3 位作者 李立伟 卢昊 尹彦鑫 孟志军 《农业机械学报》 北大核心 2025年第2期325-332,共8页
为进一步提高基于介电特性的联合收获机小麦含水率检测装置模型检测精度和适用范围,本研究以“京冬22号”、“蜀麦1958”、“涡麦33”3个品种小麦为研究对象,测量含水率范围为8.41%~21.6%,检测温度范围为5~40℃,容重范围为714.44~777.58... 为进一步提高基于介电特性的联合收获机小麦含水率检测装置模型检测精度和适用范围,本研究以“京冬22号”、“蜀麦1958”、“涡麦33”3个品种小麦为研究对象,测量含水率范围为8.41%~21.6%,检测温度范围为5~40℃,容重范围为714.44~777.58 kg/m^(3)的小麦相对介电常数。试验结果表明,同一温度条件下,容重越大,相对介电常数越大;在同一容重条件下,相对介电常数会随温度升高而增大,也随含水率升高而变大。采用校正集样本150个,预测集样本42个,基于遗传算法优化BP神经网络(GA-BP)的方法建立了相对介电常数、温度、容重与小麦含水率的关系模型,模型采用3-5-1结构,最大迭代次数1000次,学习误差阈值1×10^(-6)。校正集R^(2)、RMSE、MAE分别为0.996、0.241%、0.189%;预测集R^(2)、RMSE、MAE分别为0.993、0.295%、0.189%,该模型具有较高的检测精度和稳定性,为不同品种小麦含水率在线检测提供了一种新的检测方法。 展开更多
关键词 联合收获机 小麦含水率 检测模型 遗传算法 bp神经网络
在线阅读 下载PDF
基于GA-BP神经网络的边坡变形预测 被引量:2
14
作者 谭文辉 李凯 +2 位作者 刘慧敏 蔡美峰 郭奇峰 《工程科学学报》 北大核心 2025年第4期594-605,共12页
露天矿山高边坡的变形预测是保障矿山安全生产的重要手段.本文以西藏某矿山边坡为对象,采用高精度合成孔径干涉雷达对矿区南帮边坡进行了全天候位移监测,分析了边坡变形的基本规律;采用小波降噪理论对采集的时序位移监测数据进行了降噪... 露天矿山高边坡的变形预测是保障矿山安全生产的重要手段.本文以西藏某矿山边坡为对象,采用高精度合成孔径干涉雷达对矿区南帮边坡进行了全天候位移监测,分析了边坡变形的基本规律;采用小波降噪理论对采集的时序位移监测数据进行了降噪处理,并且为了避免预测模型陷入局部极小值,引入遗传算法(即GA算法)整合进BP神经网络的训练步骤中,用于优化BP神经网络的初始权值和阈值设置,建立了GA-BP神经网络边坡变形时序预测模型,并与BP神经网络边坡变形时序预测模型进行对比分析.研究结果表明:GA-BP模型较BP模型的预测精度提高了10%以上,预测的平均误差减少了50%以上,而且预测的边坡变形趋势与监测值吻合程度更高;GA-BP模型较BP模型收敛速度加快10倍以上,GA-BP模型的回归系数、模型适应度优于BP模型.因此,采用GA-BP模型可使边坡变形预测的精度、收敛速度、泛化能力均得到提高,预测结果更为可靠,可为矿山边坡安全生产提供保障. 展开更多
关键词 露天矿边坡 变形预测 bp神经网络 遗传算法 时间序列
在线阅读 下载PDF
基于混合算法改进BP神经网络的光伏发电功率预测研究 被引量:3
15
作者 钟安德 吴自玉 +2 位作者 谢宗效 毛玉明 杨留方 《云南民族大学学报(自然科学版)》 2025年第1期100-106,122,共8页
提出一种基于混合遗传蚁群算法(GA-ACO)改进BP神经网络的预测模型.通过皮尔逊相关系数公式求出与光伏发电输出功率相关性强的气象特征作为训练模型的输入,减少无关气象特征量对光伏输出功率的预测影响.运用遗传算法(GA)产生寻找最优参... 提出一种基于混合遗传蚁群算法(GA-ACO)改进BP神经网络的预测模型.通过皮尔逊相关系数公式求出与光伏发电输出功率相关性强的气象特征作为训练模型的输入,减少无关气象特征量对光伏输出功率的预测影响.运用遗传算法(GA)产生寻找最优参数问题的信息素分布,蚁群算法(ACO)在有初始信息素分布的条件下输出最优权阈值,让BP神经网络二次训练,输出预测值.分析结果表明,以晴天为例,GA-ACO-BP神经网络模型比传统BP神经网络模型、ACO-BP神经网络模型、GA-BP神经网络模型的预测结果相对误差分别减少了9.47%、4.83%和3.27个百分点,因此GA-ACO-BP神经网络模型用于光伏发电功率预测时具有更好的预测精度. 展开更多
关键词 光伏发电 遗传算法 蚁群算法 bp神经网络 参数优化 功率预测
在线阅读 下载PDF
基于聚类算法与贝叶斯优化的BP神经网络实时碳排放量预测模型
16
作者 姜宇恒 乔宗良 +2 位作者 李逗 任少君 司风琪 《热力发电》 北大核心 2025年第11期126-135,共10页
为了构建燃煤电厂碳排放量预测模型,针对燃煤机组普遍缺少入炉煤实时元素分析的问题,依据某百万千瓦机组2023年入炉煤质信息,以低位发热量、挥发分、硫分作为煤质划分依据,采用K-means++算法进行聚类分析,通过相关性分析筛选碳排放量预... 为了构建燃煤电厂碳排放量预测模型,针对燃煤机组普遍缺少入炉煤实时元素分析的问题,依据某百万千瓦机组2023年入炉煤质信息,以低位发热量、挥发分、硫分作为煤质划分依据,采用K-means++算法进行聚类分析,通过相关性分析筛选碳排放量预测模型的输入参数,基于贝叶斯优化的BP神经网络对聚类后各簇数据分别构建碳排放量预测模型,并对升降负荷等工况进行模型测试。结果显示,经煤质聚类后的模型在预测碳排放量时准确性显著提高,与未聚类的模型相比,平均均方根误差和平均相对误差最优情况降低约53.4%、49.2%,特别是在变负荷工况下,预测结果较准确。该方法不仅能有效预测燃煤电厂的碳排放量,还能在煤质复杂多变的情况下保持较高精度。 展开更多
关键词 碳排放量预测 聚类算法 贝叶斯优化 bp神经网络 煤质
在线阅读 下载PDF
基于SSA-GA-BP神经网络的激光三角法测量误差研究
17
作者 肖清浩 董祉序 +2 位作者 孙兴伟 杨赫然 刘寅 《仪表技术与传感器》 北大核心 2025年第8期19-24,共6页
针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻... 针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻雀搜索算法(SSA)对GA-BP网络实施二次优化,构建出SSA-GA-BP误差预测模型。通过设计误差试验采集数据,并采用该模型对数据进行训练与测试。为评估模型性能,对比不同算法的输出误差,并将决定系数、均方根误差和平均绝对误差作为评估标准。结果显示,SSA-GA-BP算法预测精度较高,与实验值拟合效果良好。相较于其他模型,SSA-GA-BP模型具有更高的预测精度和更强的泛化能力,为后续误差补偿提供了方法。 展开更多
关键词 激光三角法 误差预测 遗传算法 麻雀搜索算法 bp神经网络
在线阅读 下载PDF
基于改进BP神经网络的船舶油耗预测方法研究
18
作者 吴泽颖 赵强 +1 位作者 胡智辉 王敬钰 《舰船科学技术》 北大核心 2025年第11期149-154,共6页
为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用... 为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用遗传算法优化BP神经网络,建立高精度的船舶油耗模型。以1艘液化石油天然气运输船为研究对象,实验结果表明,优化后的BP神经网络油耗模型在预测性能方面获得较大提升,训练集和验证集的均方根误差分别降低了0.1122和0.1068,决定系数提高1.58%。该研究成果能够为船舶节能减排提供可靠的决策支持。 展开更多
关键词 bp神经网络 核主成分分析 遗传算法 船舶油耗 预测模型
在线阅读 下载PDF
基于IGA-BP的地下电缆健康指数预测 被引量:1
19
作者 黄金波 邹国平 +2 位作者 焦建格 陈向荣 赵天剑 《电力科学与技术学报》 北大核心 2025年第3期265-274,共10页
随着电缆设备的大量投运,电缆故障问题也威胁着电网安全运行,传统的运维检修工作难以准确预测出电缆绝缘目前的健康状态。针对此问题,提出了一种基于改进遗传算法-反向传播(improved genetic algorithm-back propagation,IGA-BP)神经网... 随着电缆设备的大量投运,电缆故障问题也威胁着电网安全运行,传统的运维检修工作难以准确预测出电缆绝缘目前的健康状态。针对此问题,提出了一种基于改进遗传算法-反向传播(improved genetic algorithm-back propagation,IGA-BP)神经网络模型的电缆健康指数预测方法。由于地下电缆在不同的老化阶段其参数变化率不同,该方法在遗传算法优化过程中将地下电缆近几年的老化趋势特征加入适应度函数和变异算子中,对不同个体基于老化趋势特征进行区分,提高了模型搜索全局最优解的效率和预测准确率。实验结果表明:对比传统反向传播(back propagation,BP)神经网络和遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络,IGA-BP神经网络的准确率提高了3.68%,五折交叉验证的准确率为99.39%,并在15 kV高压交联聚乙烯(cross-linked polyethylene,XLPE)地下电缆数据集中取得了95.8%的准确率;所构建的模型能够充分考虑电缆过去的老化信息,更适用于电缆的健康指数预测。 展开更多
关键词 地下电缆 交联聚乙烯 健康指数预测 bp神经网络 遗传算法 老化趋势特征
在线阅读 下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
20
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 bp神经网络 遗传算法 预测模型
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部