A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic the...A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic thermodynamics and a growth kinetics model based on neural networks were established.Then,optimization formulations were constructed in three stages to obtain an optimal sintering schedule that minimized energy consumption for different requirements.Simulations demonstrate that the models accurately predict the oxygen vacancy concentrations and grain size,with root mean square errors of approximately 5%and 3%,respectively.Furthermore,the optimized sintering schedule not only meets the required quality standards but also reduces sintering time by 12.31%and keeping temperature by 11.96%.This research provides new insights and methods for the preparation of ternary cathode materials.展开更多
Using object mathematical model of traditional control theory can not solve the forecasting problem of the chemical components of sintered ore.In order to control complicated chemical components in the manufacturing p...Using object mathematical model of traditional control theory can not solve the forecasting problem of the chemical components of sintered ore.In order to control complicated chemical components in the manufacturing process of sintered ore,some key techniques for intelligent forecasting of the chemical components of sintered ore are studied in this paper.A new intelligent forecasting system based on SVM is proposed and realized.The results show that the accuracy of predictive value of every component is more than 90%.The application of our system in related companies is for more than one year and has shown satisfactory results.展开更多
基金supported by the National Natural Science Foundation of China(No.62033014)the Application Projects of Integrated Standardization and New Paradigm for Intelligent Manufacturing from the Ministry of Industry and Information Technology of China in 2016,and the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0700).
文摘A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic thermodynamics and a growth kinetics model based on neural networks were established.Then,optimization formulations were constructed in three stages to obtain an optimal sintering schedule that minimized energy consumption for different requirements.Simulations demonstrate that the models accurately predict the oxygen vacancy concentrations and grain size,with root mean square errors of approximately 5%and 3%,respectively.Furthermore,the optimized sintering schedule not only meets the required quality standards but also reduces sintering time by 12.31%and keeping temperature by 11.96%.This research provides new insights and methods for the preparation of ternary cathode materials.
基金Supported by Key Science and Technology Project of Wuhan(No. 20106062327)Self-determined and Innovative Research Funds of WUT (No.2010-YB-20)
文摘Using object mathematical model of traditional control theory can not solve the forecasting problem of the chemical components of sintered ore.In order to control complicated chemical components in the manufacturing process of sintered ore,some key techniques for intelligent forecasting of the chemical components of sintered ore are studied in this paper.A new intelligent forecasting system based on SVM is proposed and realized.The results show that the accuracy of predictive value of every component is more than 90%.The application of our system in related companies is for more than one year and has shown satisfactory results.