For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. Fi...This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.展开更多
This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feed...This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.展开更多
The step-type contrast structure for a singular singularly perturbed problem is shown. By use of the method of boundary function, the formal asymptotic expansion is constructed. At the same time, based on sewing orbit...The step-type contrast structure for a singular singularly perturbed problem is shown. By use of the method of boundary function, the formal asymptotic expansion is constructed. At the same time, based on sewing orbit smooth, the existence of the step- type solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of the present results.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The ob...The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
<div style="text-align:justify;"> In this paper, the numerical solution and its error analysis of quasilinear singular perturbation two-point boundary value problems based on the principle of equidistr...<div style="text-align:justify;"> In this paper, the numerical solution and its error analysis of quasilinear singular perturbation two-point boundary value problems based on the principle of equidistribution are given. On the non-uniform grid of the uniformly distributed arc-length monitor function, the solution of the simple upwind scheme is obtained. It is proved that the adaptive simple upwind scheme based on the principle of equidistribution has uniform convergence for small perturbation parameters. Numerical experiments are carried out and the error analysis are confirmed. </div>展开更多
The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenb...The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of delayed system. The additive control law must be in function of fault term, then, in the absence of fault the expression of additive control equal to zero. The generation of nominal control law consist to determinate the state feedback gain by using the Lambert W method. Around all these control tools, we propose an extension of the additive FTC to delayed singularly perturbed systems (SPS). So, this extension consists to decompose the delayed SPS in two parts: delayed slow subsystem (delayed SS) and fast subsystem (FS) without time delay. Next, we consider that the delayed SPS is affected at its steady-state, and we apply the principal of FTC to the delayed SS and finally we combine them with the feedback gain control of FS by using the principal of composite control.展开更多
Now we point out the "cover layer" phenomenon of solution. Namely, the solution of problem has a non-uniformly thin layer region, in which there exists a smaller thin layer. It is formed a "layer-in-lay...Now we point out the "cover layer" phenomenon of solution. Namely, the solution of problem has a non-uniformly thin layer region, in which there exists a smaller thin layer. It is formed a "layer-in-layer". Mo studied the second order singularly perturbed problem. In many nonlinear mechanical problems there exist singular perturbations of nonlinear展开更多
We discuss the uniformly higher order accurate extrapolations, which are based on the uniform expansion for global error, to solutions of uniformly convergent discretization methods for singularly perturbed problems. ...We discuss the uniformly higher order accurate extrapolations, which are based on the uniform expansion for global error, to solutions of uniformly convergent discretization methods for singularly perturbed problems. By applying the approach to the in-Allen-Southwell scheme for a non-self-adjoint problem, we obtain an extrapolation solution which is uniformly convergent with order two. We confirm the result by numerical calculations.展开更多
We consider the existence and asymptotic behavior of singularly perturbed boundary value problem;εX″= b(X,t)X′,t ∈(0, 1)(1)X(0) =α, X(1) =β, (2)where, ε】0, is a sufficiently small parameter, b(X,t...We consider the existence and asymptotic behavior of singularly perturbed boundary value problem;εX″= b(X,t)X′,t ∈(0, 1)(1)X(0) =α, X(1) =β, (2)where, ε】0, is a sufficiently small parameter, b(X,t) is continuous in R×[0,1 ],α,βare prescribedboundary condition, and there is a function X<sub>0</sub>(t) satisfying the implicit equation b[X<sub>0</sub>(t),t] 0t∈[0,1 ].Boundary value problem in this case is rarely studied by other mathematician, the auther has ever dis-cussed the autonomous equation corresponding the boundary value problem (1),(2). Generally speaking,the solution of the corresponding problem has boundary layer at each end of the time interval [0 ,1] , itsinner solution is commposed by one or several constant function, these constant is the zero point of the au-展开更多
The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper...The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.展开更多
Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditi...Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.展开更多
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
文摘This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.
基金supported by Russian Foundation for Basic Research(No.15-08-06859a)and by the Ministry of Education and Science of the Russian Federation in the framework of the basic part of the state order(No.2.8629.2017).
文摘This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.
基金Project supported by the National Natural Science Foundation of China(No.11071075)the Natural Science Foundation of Shanghai(No.10ZR1409200)
文摘The step-type contrast structure for a singular singularly perturbed problem is shown. By use of the method of boundary function, the formal asymptotic expansion is constructed. At the same time, based on sewing orbit smooth, the existence of the step- type solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of the present results.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
基金This work was supported by the National Natural Science Foundation of China (No. 60474078,60304001).
文摘The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
文摘<div style="text-align:justify;"> In this paper, the numerical solution and its error analysis of quasilinear singular perturbation two-point boundary value problems based on the principle of equidistribution are given. On the non-uniform grid of the uniformly distributed arc-length monitor function, the solution of the simple upwind scheme is obtained. It is proved that the adaptive simple upwind scheme based on the principle of equidistribution has uniform convergence for small perturbation parameters. Numerical experiments are carried out and the error analysis are confirmed. </div>
文摘The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of delayed system. The additive control law must be in function of fault term, then, in the absence of fault the expression of additive control equal to zero. The generation of nominal control law consist to determinate the state feedback gain by using the Lambert W method. Around all these control tools, we propose an extension of the additive FTC to delayed singularly perturbed systems (SPS). So, this extension consists to decompose the delayed SPS in two parts: delayed slow subsystem (delayed SS) and fast subsystem (FS) without time delay. Next, we consider that the delayed SPS is affected at its steady-state, and we apply the principal of FTC to the delayed SS and finally we combine them with the feedback gain control of FS by using the principal of composite control.
基金The Project Supported by The National Natural Science Foundation of China
文摘Now we point out the "cover layer" phenomenon of solution. Namely, the solution of problem has a non-uniformly thin layer region, in which there exists a smaller thin layer. It is formed a "layer-in-layer". Mo studied the second order singularly perturbed problem. In many nonlinear mechanical problems there exist singular perturbations of nonlinear
基金Supported by the National Natural Science Foundation of China
文摘We discuss the uniformly higher order accurate extrapolations, which are based on the uniform expansion for global error, to solutions of uniformly convergent discretization methods for singularly perturbed problems. By applying the approach to the in-Allen-Southwell scheme for a non-self-adjoint problem, we obtain an extrapolation solution which is uniformly convergent with order two. We confirm the result by numerical calculations.
文摘We consider the existence and asymptotic behavior of singularly perturbed boundary value problem;εX″= b(X,t)X′,t ∈(0, 1)(1)X(0) =α, X(1) =β, (2)where, ε】0, is a sufficiently small parameter, b(X,t) is continuous in R×[0,1 ],α,βare prescribedboundary condition, and there is a function X<sub>0</sub>(t) satisfying the implicit equation b[X<sub>0</sub>(t),t] 0t∈[0,1 ].Boundary value problem in this case is rarely studied by other mathematician, the auther has ever dis-cussed the autonomous equation corresponding the boundary value problem (1),(2). Generally speaking,the solution of the corresponding problem has boundary layer at each end of the time interval [0 ,1] , itsinner solution is commposed by one or several constant function, these constant is the zero point of the au-
基金supported by the National Natural Science Foundation of China(12001189)supported by the National Natural Science Foundation of China(11171104,12171148)。
文摘The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.
基金This project was supported by the National Natural Science Foundation of China (60574023), the Natural Science Foundation of Shandong Province (Z2005G01), and the Natural Science Foundation of Qingdao City (05-1-JC-94).
文摘Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.