The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and...The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.展开更多
Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering...Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering,and reworking.Therefore,physical or chemical properties of rocks through time record the composite effects of geological,biological,hydrological,and climatological processes.Temporal variations in these time series datasets could provide important clues for understanding the co-evolution of different layers on Earth.However,deciphering Earth's evolution in deep time is challenged by incompleteness,singularity,and intermittence of geological records associated with extreme geological events,hindering a rigorous assessment of the underlying coupling mechanisms.Here,we applied the recently developed local singularity analysis and wavelet analysis method to deep-time U-Pb age spectra and sedimentary abundance record across the past 3.5 Gyrs.Standard cross-correlation analysis suggests that the singularity records of marine sediment accumulations and magmatism intensity at continental margin are correlated negatively(R^(2)=0.8),with a delay of~100 Myr.Specifically,wavelet coherence analysis suggests a~500-800 Myr cycle of correlation between two records,implying a coupling between the major downward processes(subduction and recycling sediments)and upward processes(magmatic events)related to the aggregation and segregation of supercontinents.The results clearly reveal the long-term cyclic feedback mechanism between sediment accumulation and magmatism intensity through aggregation of supercontinents.展开更多
We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solu...We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solution must blow up for certain initial data in both non-relativistic and relativistic settings.展开更多
In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρ...In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.展开更多
This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-sp...This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-spherical wrist and two lockable passive telescopic links(LPTLs),which enable it to have both active revolute and passive prismatic joints and operate in two distinct modes.To begin with the kinematic singularity analysis,the study derives the differential kinematic equations for the manipulator and identifies the dominant Jacobian matrix that causes singularities.Subsequently,an in-depth analysis of singularities from multiple perspectives is conducted.Firstly,a kinematic singularity map method is proposed to capture the distribution of singularities within the reachable workspace.Then,the influence of the two LPTLs on singularities is thoroughly examined.Finally,a new method based on the matrix rank equivalence principle is introduced to determine singularity conditions,enabling the identification of all the singular configurations for the SSRMS-type reconfigurable manipulator.Notably,this method significantly reduces computational complexity,and the singularity conditions obtained have more concise equations.For the singularity avoidance problem,a novel method is developed,which simultaneously addresses the requirements of real-time performance,high precision,and the avoidance of both kinematic singularities and joint limit constraints.Benefiting from these excellent properties,the proposed method can effectively resolve the singularity issues encountered separately by the SSRMS-type reconfigurable manipulator in its two operational modes.Several typical simulations validate the utility of all the proposed methods.展开更多
In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, ...In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.展开更多
The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-E...The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality.展开更多
As traced by the Big Bang theory,the starting point of the universe,is called the“Singularity”in Da Ci Hai,an unabridged,comprehensive dictionary.According to cosmological reasoning,the singularity has an infinite d...As traced by the Big Bang theory,the starting point of the universe,is called the“Singularity”in Da Ci Hai,an unabridged,comprehensive dictionary.According to cosmological reasoning,the singularity has an infinite density of matter,an infinite curvature of space and time,and it is invisible and infinite.These characteristics are analogous to the human imagination at the level of innovation.For the innovation of cosmetic raw materials,there is also the possibility of infinite evolution.For example,in recent years,the scientific research in cosmetic industry the for promoting upgrade in raw materials is quite proactive.From the raw material enterprises,down to the brand company,the investment in raw material innovation is also strengthened at a visible rate.展开更多
针对特高压接入的输电网网架错综复杂、远景适应性差,甚至出现网架规划与开环分区决策相互独立导致资源浪费等问题,该文引入奇异值分解(singular value decomposition,SVD)和特征索引技术,提出了一种考虑电磁环网开环分区和500/220kV典...针对特高压接入的输电网网架错综复杂、远景适应性差,甚至出现网架规划与开环分区决策相互独立导致资源浪费等问题,该文引入奇异值分解(singular value decomposition,SVD)和特征索引技术,提出了一种考虑电磁环网开环分区和500/220kV典型供电结构的输电网多阶段规划方法。首先,提取典型供电结构的路径特征,制定了一种基于标签路径特征的典型供电结构索引策略;然后,构建了一种基于SVD的典型供电结构相似度指标,基于此,以全局典型供电结构相似程度最大为目标,建立了相似度识别规划模型;最后,提出了一种反馈调节机制及求解方法,统筹协调各阶段网架规划和开环分区之间的决策信息。与传统规划方法相比,该文方法不仅能够避免不同阶段开环分区决策导致的资源浪费,还可以减少复杂的规划评估指标计算,构建供电可靠性高、运行方式灵活、远景适应性强的网架结构。基于湖南某地区实际电网算例验证了该文方法的准确性和有效性。展开更多
为解决石油行业大数据高效安全传输难题,将图像转化为三通道矩阵数据并对矩阵进行奇异值分解,综合考虑Laplace算子、灰度方差函数、离散余弦变换系数、图像相关系数、熵函数、图像结构相似度和图像信噪比等7个评价因素,利用熵权逼近理...为解决石油行业大数据高效安全传输难题,将图像转化为三通道矩阵数据并对矩阵进行奇异值分解,综合考虑Laplace算子、灰度方差函数、离散余弦变换系数、图像相关系数、熵函数、图像结构相似度和图像信噪比等7个评价因素,利用熵权逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)法对分解后的奇异值进行优选,在确保数据真实性的前提下用少量奇异值表征原始图像,进行图像压缩,降低数据大小,提高传输效率;提出多通道猫脸分割加密方法,分别对每个颜色通道的图像进行随机分割、随机加密和随机排序,解决了传统猫脸加密算法颜色通道线性相关度高,整体置乱度低的问题.结果表明:改进奇异值压缩技术在保证图像清晰的情况下仅利用15%的奇异值数据完成对图像的压缩,最大图像压缩比可达4.43,平均压缩后所占用的存储空间仅为原空间的26.29%,数据传输控制协议通信平均传输效率提高86.39%.在加密图像达到0相关的前提下,多通道猫脸分割加密算法加密图像在像素点处三通道颜色值完全不同,新方法颜色通道相关系数分别为0.20、0.22和0.25,对比传统猫脸加密方法,分别降低0.78、0.75和0.71.新方法加密效果好、难破解,可为石油行业数字化转型提供理论和技术支撑.展开更多
基金supported by the Guangdong Province Introduced Innovative R&D Team of Big Data-Mathematical Earth Sciences and Extreme Geological Events Team(grant number 2021ZT09H399)the National Natural Science Foundation of China(grant number 42430111,42050103).
文摘The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.
基金supported by the National Natural Science Foundation of China(No.42050103)。
文摘Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering,and reworking.Therefore,physical or chemical properties of rocks through time record the composite effects of geological,biological,hydrological,and climatological processes.Temporal variations in these time series datasets could provide important clues for understanding the co-evolution of different layers on Earth.However,deciphering Earth's evolution in deep time is challenged by incompleteness,singularity,and intermittence of geological records associated with extreme geological events,hindering a rigorous assessment of the underlying coupling mechanisms.Here,we applied the recently developed local singularity analysis and wavelet analysis method to deep-time U-Pb age spectra and sedimentary abundance record across the past 3.5 Gyrs.Standard cross-correlation analysis suggests that the singularity records of marine sediment accumulations and magmatism intensity at continental margin are correlated negatively(R^(2)=0.8),with a delay of~100 Myr.Specifically,wavelet coherence analysis suggests a~500-800 Myr cycle of correlation between two records,implying a coupling between the major downward processes(subduction and recycling sediments)and upward processes(magmatic events)related to the aggregation and segregation of supercontinents.The results clearly reveal the long-term cyclic feedback mechanism between sediment accumulation and magmatism intensity through aggregation of supercontinents.
基金supported by the National Key R&D Program of China(2021YFA1001700)the NSFC(12071360)the Fundamental Research Funds for the Central Universities in China.
文摘We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solution must blow up for certain initial data in both non-relativistic and relativistic settings.
基金supported by the Technological Innovation Talents in Universities and Colleges in Henan Province(No.21HASTIT025)the Natural Science Foundation of Henan Province(No.222300420449)the Innovative Research Team of Henan Polytechnic University(No.T2022-7)。
文摘In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.
基金co-supported by the Basic Science Center Project of the National Natural Science Foundation of China(No.T2388101)the Key Program of the National Natural Science Foundation of China(No.92148203).
文摘This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-spherical wrist and two lockable passive telescopic links(LPTLs),which enable it to have both active revolute and passive prismatic joints and operate in two distinct modes.To begin with the kinematic singularity analysis,the study derives the differential kinematic equations for the manipulator and identifies the dominant Jacobian matrix that causes singularities.Subsequently,an in-depth analysis of singularities from multiple perspectives is conducted.Firstly,a kinematic singularity map method is proposed to capture the distribution of singularities within the reachable workspace.Then,the influence of the two LPTLs on singularities is thoroughly examined.Finally,a new method based on the matrix rank equivalence principle is introduced to determine singularity conditions,enabling the identification of all the singular configurations for the SSRMS-type reconfigurable manipulator.Notably,this method significantly reduces computational complexity,and the singularity conditions obtained have more concise equations.For the singularity avoidance problem,a novel method is developed,which simultaneously addresses the requirements of real-time performance,high precision,and the avoidance of both kinematic singularities and joint limit constraints.Benefiting from these excellent properties,the proposed method can effectively resolve the singularity issues encountered separately by the SSRMS-type reconfigurable manipulator in its two operational modes.Several typical simulations validate the utility of all the proposed methods.
文摘In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.
文摘The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality.
文摘As traced by the Big Bang theory,the starting point of the universe,is called the“Singularity”in Da Ci Hai,an unabridged,comprehensive dictionary.According to cosmological reasoning,the singularity has an infinite density of matter,an infinite curvature of space and time,and it is invisible and infinite.These characteristics are analogous to the human imagination at the level of innovation.For the innovation of cosmetic raw materials,there is also the possibility of infinite evolution.For example,in recent years,the scientific research in cosmetic industry the for promoting upgrade in raw materials is quite proactive.From the raw material enterprises,down to the brand company,the investment in raw material innovation is also strengthened at a visible rate.
文摘针对特高压接入的输电网网架错综复杂、远景适应性差,甚至出现网架规划与开环分区决策相互独立导致资源浪费等问题,该文引入奇异值分解(singular value decomposition,SVD)和特征索引技术,提出了一种考虑电磁环网开环分区和500/220kV典型供电结构的输电网多阶段规划方法。首先,提取典型供电结构的路径特征,制定了一种基于标签路径特征的典型供电结构索引策略;然后,构建了一种基于SVD的典型供电结构相似度指标,基于此,以全局典型供电结构相似程度最大为目标,建立了相似度识别规划模型;最后,提出了一种反馈调节机制及求解方法,统筹协调各阶段网架规划和开环分区之间的决策信息。与传统规划方法相比,该文方法不仅能够避免不同阶段开环分区决策导致的资源浪费,还可以减少复杂的规划评估指标计算,构建供电可靠性高、运行方式灵活、远景适应性强的网架结构。基于湖南某地区实际电网算例验证了该文方法的准确性和有效性。
文摘为解决石油行业大数据高效安全传输难题,将图像转化为三通道矩阵数据并对矩阵进行奇异值分解,综合考虑Laplace算子、灰度方差函数、离散余弦变换系数、图像相关系数、熵函数、图像结构相似度和图像信噪比等7个评价因素,利用熵权逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)法对分解后的奇异值进行优选,在确保数据真实性的前提下用少量奇异值表征原始图像,进行图像压缩,降低数据大小,提高传输效率;提出多通道猫脸分割加密方法,分别对每个颜色通道的图像进行随机分割、随机加密和随机排序,解决了传统猫脸加密算法颜色通道线性相关度高,整体置乱度低的问题.结果表明:改进奇异值压缩技术在保证图像清晰的情况下仅利用15%的奇异值数据完成对图像的压缩,最大图像压缩比可达4.43,平均压缩后所占用的存储空间仅为原空间的26.29%,数据传输控制协议通信平均传输效率提高86.39%.在加密图像达到0相关的前提下,多通道猫脸分割加密算法加密图像在像素点处三通道颜色值完全不同,新方法颜色通道相关系数分别为0.20、0.22和0.25,对比传统猫脸加密方法,分别降低0.78、0.75和0.71.新方法加密效果好、难破解,可为石油行业数字化转型提供理论和技术支撑.