In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,u...In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.展开更多
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu...In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.展开更多
The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of ...The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of initial layer with different 'thickness', the N-order approximate expansion of perturbed solution concerning small parameter is obtained, and the 'multiple layer' phenomena of perturbed solutions are revealed. Using the fixed point theorem, the existence of perturbed solution is proved, and the uniformly valid asymptotic expansion of the solutions is given as well.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
A class of singularly perturbed initial boundary value problems of reaction diffusion equations for the nonlinear boundary condition with two parameters is considered. Under suitable conditions, by using the theory of...A class of singularly perturbed initial boundary value problems of reaction diffusion equations for the nonlinear boundary condition with two parameters is considered. Under suitable conditions, by using the theory of differential inequalities, the existence and the asymptotic behaviour of the solution for the initial boundary value problem are studied. The obtained solution indicates that there are initial and boundary layers and the thickness of the boundary layer is less than the thickness of the initial layer.展开更多
A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of ...A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied.展开更多
The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the ...The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear mode...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.展开更多
A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is const...A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.展开更多
In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and i...In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using t...The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using the theory of differential inequality the uniform validity of the asymptotic expansions for solution is proved.展开更多
A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic be...A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.展开更多
A class of singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems is studied.
A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence...A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.展开更多
文摘In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.
基金Supported by the Natural Science Foundation of Zhejiang Provivce (102009)Supported by the Natural Foundation of Huzhou Teacher's College(200302)
文摘In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.
文摘The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of initial layer with different 'thickness', the N-order approximate expansion of perturbed solution concerning small parameter is obtained, and the 'multiple layer' phenomena of perturbed solutions are revealed. Using the fixed point theorem, the existence of perturbed solution is proved, and the uniformly valid asymptotic expansion of the solutions is given as well.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08)+1 种基金the Natiural Science Foundation of Zhejiang Province of China (Grant No. 6090164)in part by E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004)
文摘A class of singularly perturbed initial boundary value problems of reaction diffusion equations for the nonlinear boundary condition with two parameters is considered. Under suitable conditions, by using the theory of differential inequalities, the existence and the asymptotic behaviour of the solution for the initial boundary value problem are studied. The obtained solution indicates that there are initial and boundary layers and the thickness of the boundary layer is less than the thickness of the initial layer.
基金The Project Supported by National Natural Science Foundation of China(10071045)
文摘A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied.
文摘The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.
基金Under the auspices of National Natural Science Foundation of China (No. 40676016, No. 10471039)National Key Project for Basics Research (No. 2003CB415101-03, No. 2004CB418304)+1 种基金Key Project of Chinese Academy of Sciences (No. KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (No. E03004)
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.
基金the National Natural Science Foundation of China (Nos.40676016 and 40876010)the National Basic Research Program (973) of China (Nos.2003CB415101-03 and 2004CB418304)+2 种基金the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX2-YW-Q03-08)LASG State Key Laboratory Special FundE-Institutes of Shanghai Municipal Education Commission (No.E03004)
文摘A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.
基金The project is supported by The National Natural Science Foundation of China(10071048)"Hundred People Project" of Chinese Academy of Sciences
文摘In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金the NNSF of China(40676016 and 10471039)the National Key Project for Basic Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)part by E-Institutes of Shanghai Municipal Education Commission(E03004)
文摘The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using the theory of differential inequality the uniform validity of the asymptotic expansions for solution is proved.
基金Supported by important study project of the National Natural Science Foundation of China(9 0 2 1 1 0 0 4 ) and by the"Hundred Talents'Project"of Chinese Academy of Sciences
文摘A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.
文摘A class of singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems is studied.
文摘A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.