This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty...This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.展开更多
This paper studies singular optimal control problems for systems described by nonlinear-controlled stochastic differential equations of mean-field type(MFSDEs in short),in which the coefficients depend on the state of...This paper studies singular optimal control problems for systems described by nonlinear-controlled stochastic differential equations of mean-field type(MFSDEs in short),in which the coefficients depend on the state of the solution process as well as of its expected value.Moreover,the cost functional is also of mean-field type.The control variable has two components,the first being absolutely continuous and the second singular.We establish necessary as well as sufficient conditions for optimal singular stochastic control where the system evolves according to MFSDEs.These conditions of optimality differs from the classical one in the sense that here the adjoint equation turns out to be a linear mean-field backward stochastic differential equation.The proof of our result is based on convex perturbation method of a given optimal control.The control domain is assumed to be convex.A linear quadratic stochastic optimal control problem of mean-field type is discussed as an illustrated example.展开更多
In this paper, we provide a separation theorem for the singular linear quadratic (LQ) control problem of ItS-type linear systems in the case of the state being partially observable. Above all, the Kalmam Bucy filter...In this paper, we provide a separation theorem for the singular linear quadratic (LQ) control problem of ItS-type linear systems in the case of the state being partially observable. Above all, the Kalmam Bucy filtering of the dynamics is given by means of Girsanov transformation, by which the suboptimal feedback control of the LQ problem is determined. Furthermore, it is shown that the well-posedness of the LQ problem is equivalent to the solvability of a generalized differential Riccati equation (GDRE).展开更多
基金co-supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF21-BJ-J-1180)。
文摘This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.
基金The authorwould like to thank the editor,the associate editor,and anonymous referees for their constructive corrections and valuable suggestions that improved the manuscript.The author was partially supported by Algerian PNR Project Grant 08/u07/857,ATRST-(ANDRU)2011-2013.
文摘This paper studies singular optimal control problems for systems described by nonlinear-controlled stochastic differential equations of mean-field type(MFSDEs in short),in which the coefficients depend on the state of the solution process as well as of its expected value.Moreover,the cost functional is also of mean-field type.The control variable has two components,the first being absolutely continuous and the second singular.We establish necessary as well as sufficient conditions for optimal singular stochastic control where the system evolves according to MFSDEs.These conditions of optimality differs from the classical one in the sense that here the adjoint equation turns out to be a linear mean-field backward stochastic differential equation.The proof of our result is based on convex perturbation method of a given optimal control.The control domain is assumed to be convex.A linear quadratic stochastic optimal control problem of mean-field type is discussed as an illustrated example.
基金Supported by the National Natural Science Foundation of China (Grant No. 61174078)the Mathematical Tianyuan Youth Foundation of China (Grant No. 11126094)+1 种基金the Key Project of Natural Science Foundation of Shandong Province (Grant No. ZR2009GZ001)the research project of "SDUST Spring Bud" (Grant No.2009AZZ074)
文摘In this paper, we provide a separation theorem for the singular linear quadratic (LQ) control problem of ItS-type linear systems in the case of the state being partially observable. Above all, the Kalmam Bucy filtering of the dynamics is given by means of Girsanov transformation, by which the suboptimal feedback control of the LQ problem is determined. Furthermore, it is shown that the well-posedness of the LQ problem is equivalent to the solvability of a generalized differential Riccati equation (GDRE).