This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are i...This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.展开更多
The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core...The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We ob...We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.展开更多
Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In ...Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.展开更多
By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive soluti...By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.展开更多
Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + ...Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.展开更多
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty...This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theo...In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.展开更多
The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching...The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching principle.展开更多
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu...In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.展开更多
The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of...The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
文摘This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.
基金National Natural Science Foundation of China (10477001, 60673056)
文摘The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金supported by Shandong Provincial NSF(ZR2022MA020).
文摘We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.
基金Project supported by the National Natural Science Foundation of China (Nos.10372016 and 10672022)
文摘Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.
文摘By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.
文摘Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.
基金co-supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF21-BJ-J-1180)。
文摘This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
文摘This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
基金supported by the Key Program of Scientific Research Fund for Young Teachers of AUST(QN2018109)the National Natural Science Foundation of China(11801008)+1 种基金supported by the Fundamental Research Funds for the Central Universities(2017B715X14)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX17_0508)
文摘In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.
基金Supported by the NNSF of China(10901003) Supported by the Natural Science Foundation from the Education Bureau of Anhui Province(KJ2011A135)
文摘The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching principle.
基金Supported by the Natural Science Foundation of Zhejiang Provivce (102009)Supported by the Natural Foundation of Huzhou Teacher's College(200302)
文摘In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.
文摘The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.