期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Chirality-Induced Suppression of Singlet Oxygen in Lithium-Oxygen Batteries with Extended Cycle Life
1
作者 Kyunghee Chae Youngbi Kim +11 位作者 Yookyeong Oh Hosik Hahn Jaehyun Son Youngsin Kim Hyuk‑Joon Kim Hyun Jeong Lee Dohyub Jang Jooho Moon Kisuk Kang Jeong Woo Han Filipe Marques Mota Dong Ha Kim 《Nano-Micro Letters》 2026年第2期124-137,共14页
Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of... Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization. 展开更多
关键词 Singlet oxygen suppression Chirality-induced spin selectivity effect Lithium–oxygen batteries Oxygen evolution reaction Battery stability
在线阅读 下载PDF
Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging 被引量:2
2
作者 Zhou Zhou Yiheng Zhang +7 位作者 Yingxin Xie Tian Huang Zile Li Peng Chen Yan-qing Lu Shaohua Yu Shuang Zhang Guoxing Zheng 《Light: Science & Applications》 SCIE EI CSCD 2024年第11期2589-2598,共10页
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube,which forms the fundamental framework for hyperspectral imaging.However,this cascading framework involves tradeoffs ... Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube,which forms the fundamental framework for hyperspectral imaging.However,this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization.Here,we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions,enabling the creation of minimalist,miniaturized and high-performance hyperspectral cameras.As a paradigm,we capitalize on planar liquid crystal optics to implement the proposed framework,with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter.Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity(>95%)and high spatial resolutions(~1.7 times the diffraction limit).The proposed“two-in-one”framework can resolve the conflicts between spectral and imaging resolutions,which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications. 展开更多
关键词 CRYSTAL PLANAR SINGLET
原文传递
Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen
3
作者 Meiling Zhao Yao Lu +2 位作者 Yutao Zhang Haoyun Xue Zhiqian Guo 《Chinese Chemical Letters》 2025年第5期510-514,共5页
Singlet oxygen(^(1)O_(2)),as the primary reactive oxygen species in photodynamic therapy,can effectively induce excessive oxidative stress to ablate tumors and kill germs in clinical treatment.However,monitoring endog... Singlet oxygen(^(1)O_(2)),as the primary reactive oxygen species in photodynamic therapy,can effectively induce excessive oxidative stress to ablate tumors and kill germs in clinical treatment.However,monitoring endogenous^(1)O_(2)is greatly challenging due to its extremely short lifetime and high reactivity in biological condition.Herein,we report an ultra-high signal-to-ratio near-infrared chemiluminescent probe(DCMCy)for the precise detection of endogenous^(1)O_(2)during photodynamic therapy(PDT).The methoxy moiety was removed from enolether unit in DCM-Cy to suppress the potential self-photooxidation reaction,thus greatly eliminating the photoinduced background signals during PDT.Additionally,the compact cyclobutane modification of DCM-Cy resulted in a significant 6-fold increase in cell permeability compared to conventional adamantane-dioxane probes.Therefore,our“step-by-step”strategy for DCM-Cy addressed the limitations of traditional chemiluminescent(CL)probes for^(1)O_(2),enabling effectively tracking of endogenous^(1)O_(2)level changes in living cells,pathogenic bacteria and mice in PDT. 展开更多
关键词 Fluorescent probe NEAR-INFRARED Chemiluminescent Singlet oxygen BIOIMAGING
原文传递
To activate a G protein-coupled receptor permanently with cell surface photodynamic action in the gastrointestinal tract
4
作者 Zong-Jie Cui 《World Journal of Gastroenterology》 2025年第12期1-13,共13页
Different from reversible agonist-stimulated receptor activation,singlet oxygen oxidation activates permanently G protein-coupled receptor(GPCR)cholecystokinin 1(CCK1R)in type II photodynamic action,with soluble photo... Different from reversible agonist-stimulated receptor activation,singlet oxygen oxidation activates permanently G protein-coupled receptor(GPCR)cholecystokinin 1(CCK1R)in type II photodynamic action,with soluble photosensitizer dyes(sulphonated aluminum phthalocyanine,λmax 675 nm)or genetically encoded protein photosensitizers(KillerRedλmax 585 nm;mini singlet oxygen generatorλmax 450 nm),together with a pulse of light(37 mW/cm2,1-2 minutes).Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen(GPCR-ABSO):(1)CCK1R is quantitatively converted from dimer to monomer;(2)Transmembrane domain 3,a pharmacophore for permanent photodynamic CCK1R activation,can be transplanted to non-susceptible M3 acetylcholine receptor;and(3)Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation.GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs,but show some clear advantages:Enhanced selectivity(double selectivity of localized photosensitizer and light illumination),long-lasting activation with no need for repeated drug administration,antagonist-binding site remains intact when needed,ease to apply to multiple GPCR.This type of permanent photodynamic activation may be applied to functional proteins other than GPCR. 展开更多
关键词 Cholecystokinin 1 receptor Singlet oxygen G protein-coupled receptor activated by singlet oxygen Genetically encoded protein photosensitizers Calcium oscillations Pancreatic acinar cells
暂未订购
Molybdenum carbide activated calcium sulfite for antibiotic decontamination at near-neutral pH:Dissolved oxygen promoted bisulfite adsorption for singlet oxygen generation
5
作者 Mimi Wu Shoufeng Tang +2 位作者 Zhibin Wang Qingrui Zhang Deling Yuan 《Chinese Chemical Letters》 2025年第8期624-631,共8页
Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility... Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater. 展开更多
关键词 SULFITE ACTIVATION Molybdenum carbide Singlet oxygen Near-neutral pH
原文传递
New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination
6
作者 Shengtao Jiang Mengjiao Xie +4 位作者 Limin Jin Yifan Ren Wentian Zheng Siping Ji Yanbiao Liu 《Chinese Chemical Letters》 2025年第5期634-638,共5页
Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of c... Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of carbon nanotubes functionalized with CoFe alloy nanoparticles(CoFeCNT)to selectively facilitate the electrochemical activation of O_(2)to^(1)O_(2).Benefiting from the prominently featured bimetal active sites of CoFeCNT,nearly complete production of^(1)O_(2)is achieved by the electrocatalytic activation of O_(2).Additionally,the proposed system exhibits a consistent pollutant removal efficiency>90%in a flow-through reactor over 48 h of continuous operation without a noticeable decline in performance,highlighting the dependable stability of the system for practical applications.The flow-through configuration demonstrates a striking 8-fold enhancement in tetracycline oxidation compared to a conventional batch reactor.This work provides a molecular level understanding of the oxygen reduction reaction,showing promising potential for the selective removal of emerging organic contaminants from water. 展开更多
关键词 CoFe alloy Oxygen activation Singlet oxygen Electrocatalytic system water DECONTAMINATION
原文传递
Ferrihydrite/B,N co-doped biochar composites enhancing tetracycline degradation:The crucial role of boron incorporation in Fe(III)reduction and oxygen activation
7
作者 Yujiang Huang Tong Hu +1 位作者 Sichen Li Wenjun Zhou 《Journal of Environmental Sciences》 2025年第8期252-263,共12页
Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were... Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants. 展开更多
关键词 Ferrihydrite/biochar B N co-doped biochar Oxygen activation Singlet oxygen TETRACYCLINE
原文传递
Corrigendum to“Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics”[Chinese Chemical Letters 35(2024)109761]
8
作者 Shenghui Tu Anru Liu +5 位作者 Hongxiang Zhang Lu Sun Minghui Luo Shan Huang Ting Huang Honggen Peng 《Chinese Chemical Letters》 2025年第6期788-788,共1页
The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed tw... The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed two co-corresponding authors(Hongxiang Zhang and Honggen Peng).But the corresponding author of Honggen Peng was omitted in the final published manuscript.So,we apply to designate Honggen Peng(penghonggen@ncu.edu.cn)as the second co-corresponding author and the corresponding unit is“a,b">. 展开更多
关键词 transition mode photocatalytic degradation submission processhongxiang zhang oxygen vacancy honggen peng singlet oxygen MIL honggen peng penghonggen ncueducn
原文传递
Reactive oxygen species generation by organic materials for efficient photocatalysis
9
作者 Qing Liu Tangxin Xiao +1 位作者 Zhouyu Wang Leyong Wang 《Chinese Chemical Letters》 2025年第10期1-3,共3页
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and... Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced. 展开更多
关键词 superoxide anions o hydroxyl radicals superoxide anions reactive oxygen species singlet oxygen reactive oxygen species ros including selective oxidation reactionslight driven PHOTOCATALYSIS
原文传递
Role of Degenerate States on Molecular Excitation by Intense Laser Pulses
10
作者 Bo Li Yan Rong Liu +6 位作者 Victor Kimberg Maomao Gong Yongjun Cheng Yong Wu Jian Guo Wang Jing Chen Song Bin Zhang 《Chinese Physics Letters》 2025年第11期75-82,共8页
A singlet diatomic molecule naturally carries doubly degenerate ±Λ states when the projection of the total electronic angular momentum onto the internuclear axis is nonzero. These doubly degenerate states contri... A singlet diatomic molecule naturally carries doubly degenerate ±Λ states when the projection of the total electronic angular momentum onto the internuclear axis is nonzero. These doubly degenerate states contribute equally in conventional measurements and are thus treated the same in corresponding simulations. In this study, we demonstrate that in resonant excitation by intense laser pulses, the doubly degenerate ±Λ states must be clearly identified. This is exemplified in the X^(1)Σ → A^(1)Π transition of CO molecules. This distinction becomes especially important in the case of circularly polarized radiation. We attribute this phenomenon to the interference of electron-rotational pathways in the strong-field coupled transition with the ±Λ-state of the excited Π state. This research sheds light on the fundamental aspects of intense laser-molecule interactions when extending conventional theories. 展开更多
关键词 doubly degenerate states resonant excitation intense laser pulses degenerate states molecular excitation conventional measurements intense laser pulses singlet diatomic molecule angular momentum
原文传递
Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu^0/Fe_3O_4 submicron composites 被引量:11
11
作者 聂刚 黄佳 +3 位作者 胡冶州 丁耀彬 韩小彦 唐和清 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期227-239,共13页
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr... Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants. 展开更多
关键词 Heterogeneous catalysis Magnetic Cu^0/Fe3O4 composite PEROXYMONOSULFATE Singlet oxygen Oxidative degradation
在线阅读 下载PDF
Photoactivated Activities on Spodoptera litura Cell, Singlet Oxygen and Photostability of Photosensitizers
12
作者 王平 孟志远 +1 位作者 陈思 陈小军 《Agricultural Science & Technology》 CAS 2014年第5期769-773,816,共6页
[Objective ]The aim of this study was to improve the photostability of pho-tosensitizers. [Method] 2,5-Diphenylthiophene and 2,5-dithienylethynylthiophene were synthesized by replacing thiophene rings of α-terthienyl... [Objective ]The aim of this study was to improve the photostability of pho-tosensitizers. [Method] 2,5-Diphenylthiophene and 2,5-dithienylethynylthiophene were synthesized by replacing thiophene rings of α-terthienyl (α-T) with benzene rings. Photoactivated activities on Spodoptera litura (SL) cells, singlet oxygen with UV and photostability of photosensitizers were investigated. [Result] The cytotoxicity of pho-tosensitizer 2,5-diphenylthiophene on SL cells was 0.22 and 0.16 μg/ml after treat-ment for 24 and 48 h, respectively, while that of 2,5-dithienylethynylthiophene on SL cells was 0.06 and 0.04 μg/ml. Singlet oxygen of 2,5-diphenylthiophene and 2,5-dithienylethynylthiophene was 1.047 5, 1.529 4 μg/mmol under UV, respectively. Degradation dynamic equations of 2,5-diphenylthiophene and 2,5-dithienylethynylthio-phene in methanol were Ct= 5.227 1e-0.006 1t, Ct= 5.084 2e-0.097 3t and half life was 111.79, 7.12 h. [Conclusion] Photosensitizer 2,5-diphenylthiophene has high singlet oxygen production ability, and high photoactivated cytotoxicity on SL cells under UV. Moreover, 2,5-diphenylthiophene has overcome the deficiency of photoactivated in-secticides, which is not applied directly in field because it degrades quickly in the environment. 展开更多
关键词 PHOTOSENSITIZER Singlet oxygen Photoactivated activity Spodoptera lituracell
在线阅读 下载PDF
Structure of the Universe
13
作者 Shihao Chen 《International Journal of Astronomy and Astrophysics》 2018年第4期323-338,共16页
Based on a cosmological model without singularity, a possible structure of the universe is presented. It is proved that there must simultaneously be two sorts of symmetry breaking in the universe. The universe is comp... Based on a cosmological model without singularity, a possible structure of the universe is presented. It is proved that there must simultaneously be two sorts of symmetry breaking in the universe. The universe is composed of infinite s-cosmic islands, infinite v-cosmic islands and infinite transition zone. The existing and changing forms of the cosmic islands must be diverse. The cosmological principle holds only approximately within a cosmic island. No information can be exchanged between an s-cosmic island and an adjacent v-cosmic island so that every observer thinks his cosmic island to be the whole universe. It is possible that some cosmic islands are contracting, some cosmic islands are expanding, and other cosmic islands are stable for a time. But the universe as a whole is always invariable and contains all possible existing forms of matter. To give a possible explanation for orphan quasars. To predict some characteristics of contracting large and huge black holes in a cosmic island. The characteristics of the light coming from the contracting huge black holes are that the intensity of the light is huge relatively to their distance, the red shifts are huge, the distribution of the huge red shifts and the orphan quasars are anisotropic, and luminescence spectrum is very wide. 展开更多
关键词 COSMIC ISLAND QUASARS Anisotropy of Huge Red SHIFTS SU(5) COLOUR singlets SINGULARITY
在线阅读 下载PDF
O2(1△g) Deactivation on O2-adsorbed Metal Surfaces
14
作者 杜姝彦 冷静 +2 位作者 杨何平 沙国河 张存浩 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期256-260,I0003,共6页
A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g)... A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1△g) is suggested by considering first the weak chemisorption of O2(1△g) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1△g) and surface O2(1△g). A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations. 展开更多
关键词 Singlet oxygen Surface quenching Deactivation probability
在线阅读 下载PDF
Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater 被引量:8
15
作者 Zhendong Li Yanmei Sun +4 位作者 Wenli Huang Cheng Xue Yan Zhu Qianwen Wang Dongfang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第2期46-58,共13页
Magnetic CuO nanosheet(Mag-CuO), as a cheap, stable, efficient and easily separated peroxymonosulfate(PMS) activator, was prepared by a simple one-step precipitation method for the removal of organic compounds from sa... Magnetic CuO nanosheet(Mag-CuO), as a cheap, stable, efficient and easily separated peroxymonosulfate(PMS) activator, was prepared by a simple one-step precipitation method for the removal of organic compounds from salt-containing wastewater.The experiments showed that the removal efficiencies of various organic pollutants including Acid Orange 7, Methylene Blue, Rhodamine B and atrazine in a high-salinity system(0.2 mol/L Na2SO4) with the Mag-CuO/PMS process were 95.81%, 74.57%, 100% and 100%,respectively.Meanwhile, Mag-CuO still maintained excellent catalytic activity in other salt systems including one or more salt components(NaCl, NaNO3, Na2HPO4, NaHCO3).A radical-quenching study and electron paramagnetic resonance analysis confirmed that singlet oxygen(1O2) was the dominant reactive oxygen species for the oxidation of organic pollutants in high-salinity systems, which is less susceptible to hindrance by background constituents in wastewater than radicals(·OH or SO4·-).The surface hydroxylation of the catalyst and catalytic redox cycle including Cu and Fe are responsible for the generation of1O2.The developed Mag-CuO catalyst shows good application prospects for the removal of organic pollutants from saline wastewater. 展开更多
关键词 Singlet oxygen (1O2) CUO NANOSHEET Saline wastewater PEROXYMONOSULFATE activation MAGNETIC separation
原文传递
Effects of Cu(Ⅱ) and humic acid on atrazine photodegradation 被引量:8
16
作者 Xia Sun Hui Liu Yaobin Zhang Yazhi Zhao Xie Quan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第5期773-777,共5页
This work was designed to explore the characteristics of photodegradation of herbicides in the copper-polluted water body. The results showed that Cu(Ⅱ) alone could induce a photo Fenton-like reaction to enhance th... This work was designed to explore the characteristics of photodegradation of herbicides in the copper-polluted water body. The results showed that Cu(Ⅱ) alone could induce a photo Fenton-like reaction to enhance the degradation of atrazine, in which hydroxyl radical (.OH) was a main active species. Humic acids restrained atrazine degradation, nevertheless, when introducing Cu(Ⅱ), the photodegradation was accelerated, in which singlet oxygen (102) replaced -OH acting as the prevailing species. A feasible mechanism for the photochemical process was also proposed, which is helpful for better understanding the environmental photochemistry of atrazine in the copper-polluted water. 展开更多
关键词 humic acids Cu(Ⅱ) PHOTODEGRADATION hydroxyl radical singlet oxygen
原文传递
Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon 被引量:7
17
作者 Shaohua Wu Chunping Yang +1 位作者 Yan Lin Jay J.Cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期330-340,共11页
Nonradical reaction driven by peroxymonosulfate(PMS)based advanced oxidation pro-cesses has drawn widespread attention in water treatment due to their inherent advantages,but the degradation behavior and mechanism of ... Nonradical reaction driven by peroxymonosulfate(PMS)based advanced oxidation pro-cesses has drawn widespread attention in water treatment due to their inherent advantages,but the degradation behavior and mechanism of organic pollutants are still unclear.In this study,the performance,intermediates,mechanism and toxicity of tetracycline(TC)degra-dation were thoroughly examined in the constructed magnetic nitrogen-doped porous car-bon/peroxymonosulfate(Co-N/C-PMS)system.The results showed that 85.4%of TC could be removed within 15 min when Co-N/C and PMS was simultaneously added and the degra-dation rate was enhanced by 3.4 and 14.7 folds compared with Co-N/C or PMS alone,re-spectively.Moreover,the performance of Co-N/C was superior to that of most previously reported catalysts.Many lines of evidence indicated that Co-N/C-PMS system was a singlet oxygen-dominated nonradical reaction,which was less interfered by pH and water compo-nents,and displayed high adaptability to actual water bodies.Subsequently,the degrada-tion process was elaborated on the basis of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry.At last,the toxicity of treated TC was greatly reduced by using microalgae Coelastrella sp.as ecological indicator.This study provides a promising approach based on singlet oxygen-dominated nonradical reaction for eliminating TC in water treatment. 展开更多
关键词 TETRACYCLINE PEROXYMONOSULFATE ACTIVATION Singlet oxygen TOXICITY
原文传递
Enhanced activation of peroxydisulfate by strontium modified BiFeO3 perovskite for ciprofloxacin degradation 被引量:6
18
作者 Caicai Wang Shengwang Gao +3 位作者 Jianchao Zhu Xunfeng Xia Mingxin Wang Yanna Xiong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第1期249-259,共11页
A series of Sr-doped BiFeO3 perovskites(Bi1-xSrxFeO3,BSFO)fabricated via sol-gel method was applied as peroxydisulfate(PDS)activator for ciprofloxacin(CIP)degradation.Various technologies were used to characterize the... A series of Sr-doped BiFeO3 perovskites(Bi1-xSrxFeO3,BSFO)fabricated via sol-gel method was applied as peroxydisulfate(PDS)activator for ciprofloxacin(CIP)degradation.Various technologies were used to characterize the morphology and physicochemical features of prepared BSFO samples and the results indicated that Sr was successfully inserted into the perovskites lattice.The catalytic performance of BiFeO3 was significantly boosted by strontium doping.Specifically,Bi0.9Sr0.1FeO3(0.1 BSFO)exhibited the highest catalytic performance for PDS activation to remove CIP,where 95%of CIP(10 mg/L)could be degraded with the addition of 1 g/L 0.1 BSFO and 1 mmol/L PDS within 60 min.Moreover,0.1 BSFO displayed high reusability and stability with lower metal leaching.Weak acidic condition was preferred to neutral and alkaline conditions in 0.1 BSFO/PDS system.The boosted catalytic performance can be interpreted as the lower oxidation state of Fe and the existence of affluent oxygen vacancies generated by Sr doping,that induced the formation of singlet oxygen(^1O_(2))which was confirmed as the dominant reactive species by radical scavenging studies and electron spin resonance(ESR)tests.The catalytic oxidation mechanism related to major ^1O_(2) and minor free radicals was proposed.Current study opens a new avenue to develop effective A-site modified perovskite and expands their application for PDS activation in wastewater remediation. 展开更多
关键词 PEROVSKITE PEROXYDISULFATE Heterogeneous catalysis Singlet oxygen CIPROFLOXACIN
原文传递
Degradation of organics using LaFeO_(3)as a persulfate activator under low-intensity ultra-violet-light irradiation:Catalytic performance and mechanism 被引量:6
19
作者 Yumei Li Jian Fan +1 位作者 Xiaonan Feng Tao Tao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第7期1043-1052,共10页
ABO_(3)-type perovskite oxides with abounding defect structures and diverse physical chemistry attributes have been extensively studied in heterogeneous catalysis.Semiconductor LaFeO_(3)perovskites fabricated via the ... ABO_(3)-type perovskite oxides with abounding defect structures and diverse physical chemistry attributes have been extensively studied in heterogeneous catalysis.Semiconductor LaFeO_(3)perovskites fabricated via the sol-gel method were used as peroxydisulfate(PDS)activators for methylene blue(MB)degradation under low-intensity ultra-violet(UV)-light to evaluate the degradation efficiency of organic pollutants and mechanism.The results indicate that under low-intensity UV irradiation,the developed UV/LaFeO_(3)/PDS system shows excellent degradation ability of organic pollutants in a wide pH range.Electron spin resonance and radical quenching experiments verify that SO_(4)^(·-),·OH,h^(+)and ^(1)O_(2)are generated during the activation process,and ^(1)O_(2)plays a dominant role in MB degradation.Reduction of low oxidation state Fe(Ⅱ)and O_(2)^(2-)/O^(-)on the LaFeO_(3)surface shows that oxygen vacancy,as the electron transfer mediator,enhances the redox cycle efficiency of Fe(Ⅱ)/Fe(Ⅲ).Photogenerated electrons of LaFeO_(3)involved in the cyclic transformation of Fe(Ⅱ)/Fe(Ⅲ)and PDS activation further increase the number of active radicals and thus promote the synergistic effect of photocatalytic coupled with sulfate radicalbased advanced oxidation processes. 展开更多
关键词 LaFeO_(3) PEROXYDISULFATE Singlet oxygen Low-intensity UV-light Rare earths
原文传递
Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy 被引量:8
20
作者 Mohammad Tavakkoli Yaraki Bin Liu Yen Nee Tan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期293-341,共49页
The great promise of photodynamic therapy(PDT) has thrusted the rapid progress of developing highly effective photosensitizers(PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the ... The great promise of photodynamic therapy(PDT) has thrusted the rapid progress of developing highly effective photosensitizers(PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers(nano-photosensitizers) with better photostability and higher singlet oxygen generation(SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nanophotosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG(ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy. 展开更多
关键词 Nano-photosensitizer Reactive oxygen species Aggregation-induced emission Metal nanocluster Carbon dots Metalenhanced singlet oxygen generation
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部