Singlet oxygen(^(1)O_(2)),as the primary reactive oxygen species in photodynamic therapy,can effectively induce excessive oxidative stress to ablate tumors and kill germs in clinical treatment.However,monitoring endog...Singlet oxygen(^(1)O_(2)),as the primary reactive oxygen species in photodynamic therapy,can effectively induce excessive oxidative stress to ablate tumors and kill germs in clinical treatment.However,monitoring endogenous^(1)O_(2)is greatly challenging due to its extremely short lifetime and high reactivity in biological condition.Herein,we report an ultra-high signal-to-ratio near-infrared chemiluminescent probe(DCMCy)for the precise detection of endogenous^(1)O_(2)during photodynamic therapy(PDT).The methoxy moiety was removed from enolether unit in DCM-Cy to suppress the potential self-photooxidation reaction,thus greatly eliminating the photoinduced background signals during PDT.Additionally,the compact cyclobutane modification of DCM-Cy resulted in a significant 6-fold increase in cell permeability compared to conventional adamantane-dioxane probes.Therefore,our“step-by-step”strategy for DCM-Cy addressed the limitations of traditional chemiluminescent(CL)probes for^(1)O_(2),enabling effectively tracking of endogenous^(1)O_(2)level changes in living cells,pathogenic bacteria and mice in PDT.展开更多
Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility...Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater.展开更多
The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed tw...The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed two co-corresponding authors(Hongxiang Zhang and Honggen Peng).But the corresponding author of Honggen Peng was omitted in the final published manuscript.So,we apply to designate Honggen Peng(penghonggen@ncu.edu.cn)as the second co-corresponding author and the corresponding unit is“a,b">.展开更多
Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of c...Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of carbon nanotubes functionalized with CoFe alloy nanoparticles(CoFeCNT)to selectively facilitate the electrochemical activation of O_(2)to^(1)O_(2).Benefiting from the prominently featured bimetal active sites of CoFeCNT,nearly complete production of^(1)O_(2)is achieved by the electrocatalytic activation of O_(2).Additionally,the proposed system exhibits a consistent pollutant removal efficiency>90%in a flow-through reactor over 48 h of continuous operation without a noticeable decline in performance,highlighting the dependable stability of the system for practical applications.The flow-through configuration demonstrates a striking 8-fold enhancement in tetracycline oxidation compared to a conventional batch reactor.This work provides a molecular level understanding of the oxygen reduction reaction,showing promising potential for the selective removal of emerging organic contaminants from water.展开更多
Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the ani...Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.展开更多
Reactive oxygen species are essential in photocatalytic water treatment.In this paper,Gd doped carbon nitride(CN)photocatalysts were prepared by simple thermal polymerization for the photocatalytic degradation of tetr...Reactive oxygen species are essential in photocatalytic water treatment.In this paper,Gd doped carbon nitride(CN)photocatalysts were prepared by simple thermal polymerization for the photocatalytic degradation of tetracycline under visible light irradiation.The photodegradation rate of 1.OGdCN is as high as 95%in 18 min,and the photocatalytic performance is much higher than that of CN.The improvement of photocatalytic performance is mainly attributed to the fact that Gd ion implantation directly provides active sites for oxygen activation and induces the formation of N vacancies.The results of characterizations show that the introduction of Gd in CN can improve the conversion ability of activated oxygen,carrier separation and energy band structure adjustment.Therefore,1.0GdCN photocatalyst can be employed for efficient photocatalytic synthesis of tetracycline.Furthermore,three ways of photocatalytic degradation of tetracycline were revealed by high performance liquid chromatographymass spectrometry.This work provides insights into the doping strategy of CN to improve the production of reactive oxygen species for environmental remediation.展开更多
Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogo...Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogonal molecular orbitals of donor-acceptor(D-A)pairs favor the SOCT-ISC transition,herein aza-borondipyrromethenes(aza-BODIPYs)with 1,7-di-anthracyl groups(An-azaBDP)was successfully prepared,owing to steric hindrance to produce a big dihedral angle between the two molecular orbital(MO)planes.Moreover,according to density functional theory(DFT)and time-dependent density functional theory(TDDFT),the energy difference between the S1-T1orbitals of An-aza BDP is small and more inclined towards ISC.An-aza BDP can effectively generate singlet oxygen under light irradiation.An-aza BDP with light irradiation can induce apoptosis in SW620 cells,and can serve as a potential candidate for the treatment of cancer cells and tumors.展开更多
Efficient yield of^(1)O_(2)determines the photocatalytic degradation rate of antibiotics,but the regulatory mechanism for^(1)O_(2)selective generation in O_(2)activation is still lacking exploration.Herein,oxygen vaca...Efficient yield of^(1)O_(2)determines the photocatalytic degradation rate of antibiotics,but the regulatory mechanism for^(1)O_(2)selective generation in O_(2)activation is still lacking exploration.Herein,oxygen vacancy(OV)modification strategy of MIL-125 was successfully practiced to promote the selective generation of^(1)O_(2).Multiple characterizations including extended X-ray absorption fine structure(EXAFS)and electron paramagnetic resonance spectra(EPR)confirmed the formation of oxygen vacancy in OV-MIL-125.The synthesized OV-MIL-125 exhibited greatly enhanced^(1)O_(2)selective(~90%)and antibiotics removal rate in water with high mineralization rate.Dynamics analysis of excitons by transient-steady state fluorescence and phosphorescence,transient absorption spectra(TAS)revealed that oxygen vacancy greatly enhanced the intersystem crossing(ISC)of singlet exciton,promoting triplet exciton generation.Density functional theoretical(DFT)calculation also proved the reduced gap of intersystem(ΔE_(ST))and the modulated highest occupied molecular orbital(HOMO)-lowest unoccupied molecular orbital(LUMO)population which was conducive to intersystem crossing process.Calculation of transition state further confirmed the lower energy barrier forπ^(*)orbital spin flip of O_(2)adsorbed on OV-MIL-125.The Dexter energy transfer involving triplet annihilation dominated the O_(2)activation mechanism to generate^(1)O_(2)instead of the charge transfer to generate O_(2)^(·-)which happened in MIL-125.This study provides new thinking for photocatalytic activation of molecular oxygen and is expected to guide the design of MOF-based catalysts for water treatment.展开更多
Metastable endoperoxides with beta-amyloid fibrils targeting benzothiazole moieties were designed and synthesized.Singlet oxygen released from these endoperoxides by thermal cycloreversion reaction was shown to cause ...Metastable endoperoxides with beta-amyloid fibrils targeting benzothiazole moieties were designed and synthesized.Singlet oxygen released from these endoperoxides by thermal cycloreversion reaction was shown to cause significant structural changes on the amyloid assemblies.Most importantly,the cytotoxicity of the beta-amyloid fibrils on the PC12 cells were significantly reduced in the presence of endoperoxides.This observation,coupled with the fact that neither external oxygen,nor light is needed for this transformation,is very promising.展开更多
[Objective ]The aim of this study was to improve the photostability of pho-tosensitizers. [Method] 2,5-Diphenylthiophene and 2,5-dithienylethynylthiophene were synthesized by replacing thiophene rings of α-terthienyl...[Objective ]The aim of this study was to improve the photostability of pho-tosensitizers. [Method] 2,5-Diphenylthiophene and 2,5-dithienylethynylthiophene were synthesized by replacing thiophene rings of α-terthienyl (α-T) with benzene rings. Photoactivated activities on Spodoptera litura (SL) cells, singlet oxygen with UV and photostability of photosensitizers were investigated. [Result] The cytotoxicity of pho-tosensitizer 2,5-diphenylthiophene on SL cells was 0.22 and 0.16 μg/ml after treat-ment for 24 and 48 h, respectively, while that of 2,5-dithienylethynylthiophene on SL cells was 0.06 and 0.04 μg/ml. Singlet oxygen of 2,5-diphenylthiophene and 2,5-dithienylethynylthiophene was 1.047 5, 1.529 4 μg/mmol under UV, respectively. Degradation dynamic equations of 2,5-diphenylthiophene and 2,5-dithienylethynylthio-phene in methanol were Ct= 5.227 1e-0.006 1t, Ct= 5.084 2e-0.097 3t and half life was 111.79, 7.12 h. [Conclusion] Photosensitizer 2,5-diphenylthiophene has high singlet oxygen production ability, and high photoactivated cytotoxicity on SL cells under UV. Moreover, 2,5-diphenylthiophene has overcome the deficiency of photoactivated in-secticides, which is not applied directly in field because it degrades quickly in the environment.展开更多
Nonradical reaction driven by peroxymonosulfate(PMS)based advanced oxidation pro-cesses has drawn widespread attention in water treatment due to their inherent advantages,but the degradation behavior and mechanism of ...Nonradical reaction driven by peroxymonosulfate(PMS)based advanced oxidation pro-cesses has drawn widespread attention in water treatment due to their inherent advantages,but the degradation behavior and mechanism of organic pollutants are still unclear.In this study,the performance,intermediates,mechanism and toxicity of tetracycline(TC)degra-dation were thoroughly examined in the constructed magnetic nitrogen-doped porous car-bon/peroxymonosulfate(Co-N/C-PMS)system.The results showed that 85.4%of TC could be removed within 15 min when Co-N/C and PMS was simultaneously added and the degra-dation rate was enhanced by 3.4 and 14.7 folds compared with Co-N/C or PMS alone,re-spectively.Moreover,the performance of Co-N/C was superior to that of most previously reported catalysts.Many lines of evidence indicated that Co-N/C-PMS system was a singlet oxygen-dominated nonradical reaction,which was less interfered by pH and water compo-nents,and displayed high adaptability to actual water bodies.Subsequently,the degrada-tion process was elaborated on the basis of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry.At last,the toxicity of treated TC was greatly reduced by using microalgae Coelastrella sp.as ecological indicator.This study provides a promising approach based on singlet oxygen-dominated nonradical reaction for eliminating TC in water treatment.展开更多
The great promise of photodynamic therapy(PDT) has thrusted the rapid progress of developing highly effective photosensitizers(PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the ...The great promise of photodynamic therapy(PDT) has thrusted the rapid progress of developing highly effective photosensitizers(PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers(nano-photosensitizers) with better photostability and higher singlet oxygen generation(SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nanophotosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG(ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.展开更多
Fe-N co-doped coral-like hollow carbon shell (Fe-N-CS) was synthesized via a simply impregnation-pyrolysis method.The Fe-N-CS showed an excellent ability for activating peroxymonosulfate (PMS),which could degrade abou...Fe-N co-doped coral-like hollow carbon shell (Fe-N-CS) was synthesized via a simply impregnation-pyrolysis method.The Fe-N-CS showed an excellent ability for activating peroxymonosulfate (PMS),which could degrade about 93.74%tetracycline (20 mg/L) in 12 min.The Fe-N-CS/PMS system exhibited a good anti-interference capacity of various pH,inorganic anions,HA and different water qualities.More importantly,the Fe nanoparticles were anchored uniformly in the carbon layer,effectively limiting the metal leaching.The quenching tests and electron spin resonance (ESR) manifested that non-radical singlet oxygen (1O_(2))was the main reactive oxygen species (ROS) for TC degradation.The mechanism study showed that Fe nanoparticles,defect and graphite N played a key role in activating PMS to produce ROS.Moreover,three probable degradation pathways were proposed by using LC-MS measurements.Generally,this work had a new insight for the synthesis of heterogeneous Fe-N-C catalysts in the advanced oxidation process based on PMS.展开更多
Efficient generation of singlet oxygen(1 O_(2)) by an excitonic ene rgy transfer process is highly desired on a semiconductor photocatalyst for selective oxidation of methyl phenyl sulfide(MPS).Herein,it is demonstrat...Efficient generation of singlet oxygen(1 O_(2)) by an excitonic ene rgy transfer process is highly desired on a semiconductor photocatalyst for selective oxidation of methyl phenyl sulfide(MPS).Herein,it is demonstrated that a large amount of 1 O_(2) is produced on pristine graphitic carbon nitride(CN) nanosheet compared with bismuth oxybromide(BiOBr) and comme rcial P25 titanium dioxide(TiO_(2)).This leads to a certain photoactivity of CN for MPS oxidation.The observed ~77% selectivity for CN depends on the competitive results of excitonic energy transfer for 1 O_(2) formation and charge carrier separation for superoxide radical(O_(2)·) production,which are based on the phosphorescence spectra and electron paramagnetic resonance signals,respectively.Moreover,ultrathin CN nanosheets are synthesized by thermal treatment with the cyanuric acid-melamine hydrogen bonded aggregates as precursors.It is confirmed that the amount of produced 1 O_(2) could be increased by decreasing the thickness of resultant CN nanosheets.The optimized ultrathin CN nanosheet(~4 nm) exhibits excellent photoactivity with high selectivity(~99%).It is suggested that the excitonic energy transfer for 1 O_(2) formation is close related to the intrinsic exciton binding energy and the two-dimensional quantum confinement effect.This work establishes a basic mechanistic understanding on the excitonic processes in CN,and develops a feasible route to design CN-based photocatalysts for efficient 1 O_(2) generation.展开更多
A dibromo substituted BOPHY derivative(2) was prepared and found to exhibit photo-sensitization capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior photo-sensitize...A dibromo substituted BOPHY derivative(2) was prepared and found to exhibit photo-sensitization capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior photo-sensitizer than methylene blue. The HOMO-LUMO band gap for the lowest energy absorption bands of the BOPHY 1 is smaller than that of PS 2, which is in good agreement with the red shift in the absorption observed between 1 and 2.展开更多
The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photos...The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photosensitizers,including hematoporphyrin derivative(HiPorfin),hematoporphyrin monomethyl ether(HMME)and photocarcinorin(PsD-007)in air-saturated dimethylformamide(DMF)solutions were performed by the direct measurement of their near-infrared luminescence.In addition,^(1)O_(2) quencher sodium azide was employed to confirm the ^(1)O_(2) generation from the investigated photosensitizers.The maximal ^(1)O_(2) luminescence occurs at about 1280 nm with full width at half maximum of 30 nm.The ^(1)O_(2) quantum yields were found to be 0.61±0.03,0.60±0.02 and 0.59±0.03 for HiPorfin,HMME and PsD-007,respectively.These results provide that these porphyrin-based photosensitizers produce ^(1)O_(2) under irradiation,which is of significance for the study of their photodynamic action in PDT.展开更多
This paper, for the first time, reports a method that can be used as a highly sensitive probe for singlet oxygen (1O2) and superoxide anion (O2-) in vitro or in vivo. FCLA(3,7-dihydro-6-{4-[2-(N'-(5-fluoresceinyl)...This paper, for the first time, reports a method that can be used as a highly sensitive probe for singlet oxygen (1O2) and superoxide anion (O2-) in vitro or in vivo. FCLA(3,7-dihydro-6-{4-[2-(N'-(5-fluoresceinyl)thioureido)ethoxy]phenyl}-2-methylimidazo{1,2-a}pyrazin-3-one sodium salt), a chemiluminescence (CL) analysis reagent, has been reported to sensitively react with 1O2 and O2- to emit photons with a spectral peak of 525nm. In this work, when human serum albumin (HSA) was added into FCLA solution to enhance the CL intensity, approximately 20 times, compared to that without HSA. The enhanced CL had the same 525 nm spectral peak, identical to that without HSA. By gradually reducing the molecular oxygen content in the solution, we find that the auto-oxidation of oxygen molecules dissolved in the solution plays an important role in the CL process. Based on these experimental evidences, we propose a novel and highly sensitive detection method of 1O2 and O2-, which may have a great potential in chemical and medical applications.展开更多
A novel Au11Cd nanocluster was synthesized by developing a combined method and controlling the kinetics, and another Au26Cd5nanocluster was also obtained after the conditions were changed in the same reaction, which c...A novel Au11Cd nanocluster was synthesized by developing a combined method and controlling the kinetics, and another Au26Cd5nanocluster was also obtained after the conditions were changed in the same reaction, which could transfer to Au11Cd in a two-way style. Both alloy nanoclusters can photocatalyze the production of singlet oxygen(1O_(2)) and exhibit enhanced efficiencies in photocatalyzing two kinds of organic oxidations involving singlet oxygen compared with their non-alloyed mother nanoclusters, indicating that the Cd-doping might be an efficient way to enhance the photocatalysis performance of gold nanoclusters and metal nanoclusters are promising photocatalysts for organic oxidation involving singlet oxygen.展开更多
The design of supramolecular system s with efficient singlet oxygen generation has attracted considerable interests.Herein,an AIE-based singlet oxygen generation system with chemiluminescence properties is reported in...The design of supramolecular system s with efficient singlet oxygen generation has attracted considerable interests.Herein,an AIE-based singlet oxygen generation system with chemiluminescence properties is reported in aqueous media based on supramolecular host-vip assembly between a water-soluble pillar[5]arene(WP5)and an AIE photosensitizer(TPEDM).The formed supramolecular nanoparticles exhibit significant singlet oxygen generation ability as well as enhanced fluorescence.In addition,by introducing catalase,this H_(2) O_(2)-responsive supramolecular system shows increased~1 O_(2) generation efficiency compared with the blank nanoparticles.An efficient chemiluminescence system can also be achieved by entrapping an energy donor adamantane derivative(AMPPD).Moreover,the present system can function as nanoreactors to perform the photooxidation of dopamine to form polydopamine with visible light irradiation.This wo rk provides a new strategy for the construction of~1 O_(2) generation system based on supramolecular nanomaterials,which has potential applications in the fields such as chemiluminescence imaging and controlled photocatalysis.展开更多
We have presented the synthesis and characterization of three new bromo substituted stilbene derivatives, p-3,4,5-trimethoxy-p′- 2,3,4,5,6-pentabromostilbene (C1), p-N,N-dimethylamino-p′-2,3,4,5,6-pentabromostilbe...We have presented the synthesis and characterization of three new bromo substituted stilbene derivatives, p-3,4,5-trimethoxy-p′- 2,3,4,5,6-pentabromostilbene (C1), p-N,N-dimethylamino-p′-2,3,4,5,6-pentabromostilbene (C2) and p-N,N-diphenylamino-p′- 2,3,4,5,6-pentabromostilbene (C3) in this letter. The UV/vis absorption and photoluminescence were investigated in various solvents. The maximal absorption wavelength of C1 exhibited blue-shift to those of C2 and C3 in different solvents. No florescence emission could be detected for these compounds at room temperature. Singlet oxygen could be efficiently produced with these sensitizers under near-ultraviolet and visible light irradiation.展开更多
基金supported by National Natural Science Foundation of China(Nos.32121005,22225805,22308101,and 32394001)Shanghai Science and Technology Innovation Action Plan(No.23J21901600)+2 种基金Innovation Program of Shanghai Municipal Education Commission,Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,No.2021 Sci&Tech 03-28)the China Postdoctoral Science Foundation(No.2021M701199)Natural Science Foundation of Shanghai(No.23ZR1416600).
文摘Singlet oxygen(^(1)O_(2)),as the primary reactive oxygen species in photodynamic therapy,can effectively induce excessive oxidative stress to ablate tumors and kill germs in clinical treatment.However,monitoring endogenous^(1)O_(2)is greatly challenging due to its extremely short lifetime and high reactivity in biological condition.Herein,we report an ultra-high signal-to-ratio near-infrared chemiluminescent probe(DCMCy)for the precise detection of endogenous^(1)O_(2)during photodynamic therapy(PDT).The methoxy moiety was removed from enolether unit in DCM-Cy to suppress the potential self-photooxidation reaction,thus greatly eliminating the photoinduced background signals during PDT.Additionally,the compact cyclobutane modification of DCM-Cy resulted in a significant 6-fold increase in cell permeability compared to conventional adamantane-dioxane probes.Therefore,our“step-by-step”strategy for DCM-Cy addressed the limitations of traditional chemiluminescent(CL)probes for^(1)O_(2),enabling effectively tracking of endogenous^(1)O_(2)level changes in living cells,pathogenic bacteria and mice in PDT.
基金the support received from the National Natural Science Foundation of China(No.51908485)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(Nos.246Z3603G and 226Z3603G)。
文摘Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater.
文摘The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed two co-corresponding authors(Hongxiang Zhang and Honggen Peng).But the corresponding author of Honggen Peng was omitted in the final published manuscript.So,we apply to designate Honggen Peng(penghonggen@ncu.edu.cn)as the second co-corresponding author and the corresponding unit is“a,b">.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1401300)the National Natural Science Foundation of China(No.52170068).
文摘Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of carbon nanotubes functionalized with CoFe alloy nanoparticles(CoFeCNT)to selectively facilitate the electrochemical activation of O_(2)to^(1)O_(2).Benefiting from the prominently featured bimetal active sites of CoFeCNT,nearly complete production of^(1)O_(2)is achieved by the electrocatalytic activation of O_(2).Additionally,the proposed system exhibits a consistent pollutant removal efficiency>90%in a flow-through reactor over 48 h of continuous operation without a noticeable decline in performance,highlighting the dependable stability of the system for practical applications.The flow-through configuration demonstrates a striking 8-fold enhancement in tetracycline oxidation compared to a conventional batch reactor.This work provides a molecular level understanding of the oxygen reduction reaction,showing promising potential for the selective removal of emerging organic contaminants from water.
基金supported by the Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling (No.2020B121201003)the National Natural Science Foundation of China (Nos.21876099,22106088,and 22276110)+1 种基金the Key Research&Developmental Program of Shandong Province (No.2021CXGC011202)the Fundamental Research Funds of Shandong University (No.zy202102)。
文摘Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.
基金Project supported by the National Key Research and Development Program of China(2022YFF1100804)Natural Science Foundation of Xinjiang Uygur Auonomous Region(2022D01C456)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011736,2021A1515010671)Guangdong Province Scientific Research Platform Project(2022ZDZX4046,2023ZDZX4052,2020KTSCX135)Guangdong Province Specialized Scientific Research Fund Projects(20192019B121201004)High Level Talents Introduction Project of"Pearl River Talent Plan"in Guangdong Province(2019CX01L308)。
文摘Reactive oxygen species are essential in photocatalytic water treatment.In this paper,Gd doped carbon nitride(CN)photocatalysts were prepared by simple thermal polymerization for the photocatalytic degradation of tetracycline under visible light irradiation.The photodegradation rate of 1.OGdCN is as high as 95%in 18 min,and the photocatalytic performance is much higher than that of CN.The improvement of photocatalytic performance is mainly attributed to the fact that Gd ion implantation directly provides active sites for oxygen activation and induces the formation of N vacancies.The results of characterizations show that the introduction of Gd in CN can improve the conversion ability of activated oxygen,carrier separation and energy band structure adjustment.Therefore,1.0GdCN photocatalyst can be employed for efficient photocatalytic synthesis of tetracycline.Furthermore,three ways of photocatalytic degradation of tetracycline were revealed by high performance liquid chromatographymass spectrometry.This work provides insights into the doping strategy of CN to improve the production of reactive oxygen species for environmental remediation.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21–104–0–23)。
文摘Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogonal molecular orbitals of donor-acceptor(D-A)pairs favor the SOCT-ISC transition,herein aza-borondipyrromethenes(aza-BODIPYs)with 1,7-di-anthracyl groups(An-azaBDP)was successfully prepared,owing to steric hindrance to produce a big dihedral angle between the two molecular orbital(MO)planes.Moreover,according to density functional theory(DFT)and time-dependent density functional theory(TDDFT),the energy difference between the S1-T1orbitals of An-aza BDP is small and more inclined towards ISC.An-aza BDP can effectively generate singlet oxygen under light irradiation.An-aza BDP with light irradiation can induce apoptosis in SW620 cells,and can serve as a potential candidate for the treatment of cancer cells and tumors.
基金supported by the National Natural Science Foundation of China(Nos.22276086 and 21976078)the Natural Science Foundation of Jiangxi Province(Nos.20202ACB213001 and20232BAB213029)。
文摘Efficient yield of^(1)O_(2)determines the photocatalytic degradation rate of antibiotics,but the regulatory mechanism for^(1)O_(2)selective generation in O_(2)activation is still lacking exploration.Herein,oxygen vacancy(OV)modification strategy of MIL-125 was successfully practiced to promote the selective generation of^(1)O_(2).Multiple characterizations including extended X-ray absorption fine structure(EXAFS)and electron paramagnetic resonance spectra(EPR)confirmed the formation of oxygen vacancy in OV-MIL-125.The synthesized OV-MIL-125 exhibited greatly enhanced^(1)O_(2)selective(~90%)and antibiotics removal rate in water with high mineralization rate.Dynamics analysis of excitons by transient-steady state fluorescence and phosphorescence,transient absorption spectra(TAS)revealed that oxygen vacancy greatly enhanced the intersystem crossing(ISC)of singlet exciton,promoting triplet exciton generation.Density functional theoretical(DFT)calculation also proved the reduced gap of intersystem(ΔE_(ST))and the modulated highest occupied molecular orbital(HOMO)-lowest unoccupied molecular orbital(LUMO)population which was conducive to intersystem crossing process.Calculation of transition state further confirmed the lower energy barrier forπ^(*)orbital spin flip of O_(2)adsorbed on OV-MIL-125.The Dexter energy transfer involving triplet annihilation dominated the O_(2)activation mechanism to generate^(1)O_(2)instead of the charge transfer to generate O_(2)^(·-)which happened in MIL-125.This study provides new thinking for photocatalytic activation of molecular oxygen and is expected to guide the design of MOF-based catalysts for water treatment.
基金supported by the National Natural Science Foundation of China(22178048,22007008)the LiaoNing Revitalization Talents Program(XLYC1902001,XLYC1907021)the Fundamental Research Funds for the Central Universities(DUT18RC(3)062,DUT19RC(3)009,DUT23YG120).
文摘Metastable endoperoxides with beta-amyloid fibrils targeting benzothiazole moieties were designed and synthesized.Singlet oxygen released from these endoperoxides by thermal cycloreversion reaction was shown to cause significant structural changes on the amyloid assemblies.Most importantly,the cytotoxicity of the beta-amyloid fibrils on the PC12 cells were significantly reduced in the presence of endoperoxides.This observation,coupled with the fact that neither external oxygen,nor light is needed for this transformation,is very promising.
基金Supported by Science and Technology Support Program of Jiangsu Province(Agricultural Project)(BE2012346)Science and Technology Projects for Social Development of Yangzhou City,China(2012110)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(13KJB210010)~~
文摘[Objective ]The aim of this study was to improve the photostability of pho-tosensitizers. [Method] 2,5-Diphenylthiophene and 2,5-dithienylethynylthiophene were synthesized by replacing thiophene rings of α-terthienyl (α-T) with benzene rings. Photoactivated activities on Spodoptera litura (SL) cells, singlet oxygen with UV and photostability of photosensitizers were investigated. [Result] The cytotoxicity of pho-tosensitizer 2,5-diphenylthiophene on SL cells was 0.22 and 0.16 μg/ml after treat-ment for 24 and 48 h, respectively, while that of 2,5-dithienylethynylthiophene on SL cells was 0.06 and 0.04 μg/ml. Singlet oxygen of 2,5-diphenylthiophene and 2,5-dithienylethynylthiophene was 1.047 5, 1.529 4 μg/mmol under UV, respectively. Degradation dynamic equations of 2,5-diphenylthiophene and 2,5-dithienylethynylthio-phene in methanol were Ct= 5.227 1e-0.006 1t, Ct= 5.084 2e-0.097 3t and half life was 111.79, 7.12 h. [Conclusion] Photosensitizer 2,5-diphenylthiophene has high singlet oxygen production ability, and high photoactivated cytotoxicity on SL cells under UV. Moreover, 2,5-diphenylthiophene has overcome the deficiency of photoactivated in-secticides, which is not applied directly in field because it degrades quickly in the environment.
基金This work was supported by the National Natural Science Foundation of China(Nos.51978178 and 51521006)the Department of Science and Technology of Guangdong Province of China(Nos.2019A1515012044 and 2021A1515011797)+3 种基金the International S&T Cooperation Program of China(No.2015DFG92750)the Maoming Municipal Bureau of Science and Technology of Guangdong of China(No.2018S0013)the Startup Fund of Guangdong University of Petrochemical Technology(No.2020rc041)the Shanghai Tongji Gao Tingyao Environmental Science&Technology Development Foundation.
文摘Nonradical reaction driven by peroxymonosulfate(PMS)based advanced oxidation pro-cesses has drawn widespread attention in water treatment due to their inherent advantages,but the degradation behavior and mechanism of organic pollutants are still unclear.In this study,the performance,intermediates,mechanism and toxicity of tetracycline(TC)degra-dation were thoroughly examined in the constructed magnetic nitrogen-doped porous car-bon/peroxymonosulfate(Co-N/C-PMS)system.The results showed that 85.4%of TC could be removed within 15 min when Co-N/C and PMS was simultaneously added and the degra-dation rate was enhanced by 3.4 and 14.7 folds compared with Co-N/C or PMS alone,re-spectively.Moreover,the performance of Co-N/C was superior to that of most previously reported catalysts.Many lines of evidence indicated that Co-N/C-PMS system was a singlet oxygen-dominated nonradical reaction,which was less interfered by pH and water compo-nents,and displayed high adaptability to actual water bodies.Subsequently,the degrada-tion process was elaborated on the basis of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry.At last,the toxicity of treated TC was greatly reduced by using microalgae Coelastrella sp.as ecological indicator.This study provides a promising approach based on singlet oxygen-dominated nonradical reaction for eliminating TC in water treatment.
基金Agency for Science,Technology,and Research(A*STAR)for providing financial support via SINGA scholarshipthe research support funding from the Newcastle University(RSA/CCEAMD5010)。
文摘The great promise of photodynamic therapy(PDT) has thrusted the rapid progress of developing highly effective photosensitizers(PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers(nano-photosensitizers) with better photostability and higher singlet oxygen generation(SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nanophotosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG(ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
基金supported by the Key R&D Program from the Department of Science and Technology of Sichuan Province(Nos.2019YFG0056,2019YFG0443 and 2019YFG0035)the Major special projects of science and Technology Department of Sichuan Province (No.2020ZDZX0020)。
文摘Fe-N co-doped coral-like hollow carbon shell (Fe-N-CS) was synthesized via a simply impregnation-pyrolysis method.The Fe-N-CS showed an excellent ability for activating peroxymonosulfate (PMS),which could degrade about 93.74%tetracycline (20 mg/L) in 12 min.The Fe-N-CS/PMS system exhibited a good anti-interference capacity of various pH,inorganic anions,HA and different water qualities.More importantly,the Fe nanoparticles were anchored uniformly in the carbon layer,effectively limiting the metal leaching.The quenching tests and electron spin resonance (ESR) manifested that non-radical singlet oxygen (1O_(2))was the main reactive oxygen species (ROS) for TC degradation.The mechanism study showed that Fe nanoparticles,defect and graphite N played a key role in activating PMS to produce ROS.Moreover,three probable degradation pathways were proposed by using LC-MS measurements.Generally,this work had a new insight for the synthesis of heterogeneous Fe-N-C catalysts in the advanced oxidation process based on PMS.
基金NSFC(Nos.U1805255,11804086,21706044,21971057)General Financial Grant from the China Postdoctoral Science Foundation(No.2017M621316)+2 种基金the Natural Science Foundation of Heilongjiang Province,China(No.B2017006)the General Financial Grant from the Postdoctoral Science Foundation of Heilongjiang Province,China(No.LBHZ17187)the General Financial Grant from Heilongjiang Province for returned students from overseas in 2018。
文摘Efficient generation of singlet oxygen(1 O_(2)) by an excitonic ene rgy transfer process is highly desired on a semiconductor photocatalyst for selective oxidation of methyl phenyl sulfide(MPS).Herein,it is demonstrated that a large amount of 1 O_(2) is produced on pristine graphitic carbon nitride(CN) nanosheet compared with bismuth oxybromide(BiOBr) and comme rcial P25 titanium dioxide(TiO_(2)).This leads to a certain photoactivity of CN for MPS oxidation.The observed ~77% selectivity for CN depends on the competitive results of excitonic energy transfer for 1 O_(2) formation and charge carrier separation for superoxide radical(O_(2)·) production,which are based on the phosphorescence spectra and electron paramagnetic resonance signals,respectively.Moreover,ultrathin CN nanosheets are synthesized by thermal treatment with the cyanuric acid-melamine hydrogen bonded aggregates as precursors.It is confirmed that the amount of produced 1 O_(2) could be increased by decreasing the thickness of resultant CN nanosheets.The optimized ultrathin CN nanosheet(~4 nm) exhibits excellent photoactivity with high selectivity(~99%).It is suggested that the excitonic energy transfer for 1 O_(2) formation is close related to the intrinsic exciton binding energy and the two-dimensional quantum confinement effect.This work establishes a basic mechanistic understanding on the excitonic processes in CN,and develops a feasible route to design CN-based photocatalysts for efficient 1 O_(2) generation.
基金supported by NNSFC (No. 21542004)the Program for Liaoning Excellent Talents in University (No. LJQ2015087)+4 种基金the Public Research Foundation of Liaoning Province for the Cause of Science (No. 2014003009)Educational Department of Liaoning Province (No. L2014170)Science and Technology Key Project of Liaoning Province (No. 2013304007)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrythe start-up funds from Shenyang University of Chemical Technology
文摘A dibromo substituted BOPHY derivative(2) was prepared and found to exhibit photo-sensitization capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior photo-sensitizer than methylene blue. The HOMO-LUMO band gap for the lowest energy absorption bands of the BOPHY 1 is smaller than that of PS 2, which is in good agreement with the red shift in the absorption observed between 1 and 2.
基金supported by the Program for New Century Excellent Talents in Fujian Province University。
文摘The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photosensitizers,including hematoporphyrin derivative(HiPorfin),hematoporphyrin monomethyl ether(HMME)and photocarcinorin(PsD-007)in air-saturated dimethylformamide(DMF)solutions were performed by the direct measurement of their near-infrared luminescence.In addition,^(1)O_(2) quencher sodium azide was employed to confirm the ^(1)O_(2) generation from the investigated photosensitizers.The maximal ^(1)O_(2) luminescence occurs at about 1280 nm with full width at half maximum of 30 nm.The ^(1)O_(2) quantum yields were found to be 0.61±0.03,0.60±0.02 and 0.59±0.03 for HiPorfin,HMME and PsD-007,respectively.These results provide that these porphyrin-based photosensitizers produce ^(1)O_(2) under irradiation,which is of significance for the study of their photodynamic action in PDT.
文摘This paper, for the first time, reports a method that can be used as a highly sensitive probe for singlet oxygen (1O2) and superoxide anion (O2-) in vitro or in vivo. FCLA(3,7-dihydro-6-{4-[2-(N'-(5-fluoresceinyl)thioureido)ethoxy]phenyl}-2-methylimidazo{1,2-a}pyrazin-3-one sodium salt), a chemiluminescence (CL) analysis reagent, has been reported to sensitively react with 1O2 and O2- to emit photons with a spectral peak of 525nm. In this work, when human serum albumin (HSA) was added into FCLA solution to enhance the CL intensity, approximately 20 times, compared to that without HSA. The enhanced CL had the same 525 nm spectral peak, identical to that without HSA. By gradually reducing the molecular oxygen content in the solution, we find that the auto-oxidation of oxygen molecules dissolved in the solution plays an important role in the CL process. Based on these experimental evidences, we propose a novel and highly sensitive detection method of 1O2 and O2-, which may have a great potential in chemical and medical applications.
基金the startup funds from Anhui University (No.S020318006/022)the financial support from the National Natural Science Foundation of China (Nos.92061110, 21829501, 21925303, 21771186, 21222301, 21528303 and 21171170)+2 种基金Anhui Provincial Natural Science Foundation (No.2108085Y05)Hefei National Laboratory for Physical Sciences at the Microscale (No. KF2020102)Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP005)。
文摘A novel Au11Cd nanocluster was synthesized by developing a combined method and controlling the kinetics, and another Au26Cd5nanocluster was also obtained after the conditions were changed in the same reaction, which could transfer to Au11Cd in a two-way style. Both alloy nanoclusters can photocatalyze the production of singlet oxygen(1O_(2)) and exhibit enhanced efficiencies in photocatalyzing two kinds of organic oxidations involving singlet oxygen compared with their non-alloyed mother nanoclusters, indicating that the Cd-doping might be an efficient way to enhance the photocatalysis performance of gold nanoclusters and metal nanoclusters are promising photocatalysts for organic oxidation involving singlet oxygen.
基金supported by the National Natural Science Foundation of China(No.21871136)the Natural Science Foundation of Jiangsu Province(No.BK20180055)the Fundamental Research Funds for the Central Universities(No.NE2019002)。
文摘The design of supramolecular system s with efficient singlet oxygen generation has attracted considerable interests.Herein,an AIE-based singlet oxygen generation system with chemiluminescence properties is reported in aqueous media based on supramolecular host-vip assembly between a water-soluble pillar[5]arene(WP5)and an AIE photosensitizer(TPEDM).The formed supramolecular nanoparticles exhibit significant singlet oxygen generation ability as well as enhanced fluorescence.In addition,by introducing catalase,this H_(2) O_(2)-responsive supramolecular system shows increased~1 O_(2) generation efficiency compared with the blank nanoparticles.An efficient chemiluminescence system can also be achieved by entrapping an energy donor adamantane derivative(AMPPD).Moreover,the present system can function as nanoreactors to perform the photooxidation of dopamine to form polydopamine with visible light irradiation.This wo rk provides a new strategy for the construction of~1 O_(2) generation system based on supramolecular nanomaterials,which has potential applications in the fields such as chemiluminescence imaging and controlled photocatalysis.
基金support from National Natural Science Foundation of China(Nos. 20776165,20702065,20872184)Key Foundation of Chongqing Science and Technology Commission"(No.CSTC 2008BA4020)+1 种基金"A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(200735)"for financial supportsponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry as well(Nos.20071108-1, 20071108-5).
文摘We have presented the synthesis and characterization of three new bromo substituted stilbene derivatives, p-3,4,5-trimethoxy-p′- 2,3,4,5,6-pentabromostilbene (C1), p-N,N-dimethylamino-p′-2,3,4,5,6-pentabromostilbene (C2) and p-N,N-diphenylamino-p′- 2,3,4,5,6-pentabromostilbene (C3) in this letter. The UV/vis absorption and photoluminescence were investigated in various solvents. The maximal absorption wavelength of C1 exhibited blue-shift to those of C2 and C3 in different solvents. No florescence emission could be detected for these compounds at room temperature. Singlet oxygen could be efficiently produced with these sensitizers under near-ultraviolet and visible light irradiation.