In this paper, a computational model is constructed to investigate the phenomenon of the initial plasma formation and current transfer in the single-wire electrical explosion in a vacuum. The process of the single-wir...In this paper, a computational model is constructed to investigate the phenomenon of the initial plasma formation and current transfer in the single-wire electrical explosion in a vacuum. The process of the single-wire electrical explosion is divided into four stages. Stage Ⅰ: the wire is in solid state. Stage Ⅱ: the melting stage. Stage Ⅲ: the wire melts completely and the initial plasma forms. Stage IV: the core and corona expand separately. The thermodynamic calculation is applied before the wire melts completely in stages Ⅰ and Ⅱ. In stage Ⅲ, a one-dimensional magnetohydrodynamics model comes into play until the instant when the voltage collapse occurs. The temperature, density, and velocity, which are derived from the magnetohydrodynamics calculation, are averaged over the distribution area. The averaged parameters are taken as the initial conditions for stage Ⅳ in which a simplified magnetohydrodynamics model is applied. A wide-range semi-empirical equation of state, which is established based on the Thomas-Fermi-Kirzhnits model, is constructed to describe the phase transition from solid state to plasma state. The initial plasma formation and the phenomenon of current transfer in the electrical explosion of aluminum wire are investigated using the computational model. Experiments of electrical explosion of aluminum wires are carried out to verify this model. Simulation results are also compared with experimental results of the electrical explosion of copper wire.展开更多
A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and inte...A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.展开更多
This paper proposes explanation of existing methods of zeroing on basis of earth using.It is showed different constructions of several types of zeroing systems(nullifiers)for different implementations.Methods for obta...This paper proposes explanation of existing methods of zeroing on basis of earth using.It is showed different constructions of several types of zeroing systems(nullifiers)for different implementations.Methods for obtaining a zero-input impedance of a nullifier and reducing its current to almost zero without using earth are described.展开更多
基金Project supported by the National Science Foundation of China(Grant Nos.51322706,51237006,and 51325705)the Program for New Century Excellent Talents in University,China(Grant No.NCET-11-0428)the Fundamental Research Funds for the Central Universities,China
文摘In this paper, a computational model is constructed to investigate the phenomenon of the initial plasma formation and current transfer in the single-wire electrical explosion in a vacuum. The process of the single-wire electrical explosion is divided into four stages. Stage Ⅰ: the wire is in solid state. Stage Ⅱ: the melting stage. Stage Ⅲ: the wire melts completely and the initial plasma forms. Stage IV: the core and corona expand separately. The thermodynamic calculation is applied before the wire melts completely in stages Ⅰ and Ⅱ. In stage Ⅲ, a one-dimensional magnetohydrodynamics model comes into play until the instant when the voltage collapse occurs. The temperature, density, and velocity, which are derived from the magnetohydrodynamics calculation, are averaged over the distribution area. The averaged parameters are taken as the initial conditions for stage Ⅳ in which a simplified magnetohydrodynamics model is applied. A wide-range semi-empirical equation of state, which is established based on the Thomas-Fermi-Kirzhnits model, is constructed to describe the phase transition from solid state to plasma state. The initial plasma formation and the phenomenon of current transfer in the electrical explosion of aluminum wire are investigated using the computational model. Experiments of electrical explosion of aluminum wires are carried out to verify this model. Simulation results are also compared with experimental results of the electrical explosion of copper wire.
基金supported by the National Natural Science Foundation of China (60776027).
文摘A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.
文摘This paper proposes explanation of existing methods of zeroing on basis of earth using.It is showed different constructions of several types of zeroing systems(nullifiers)for different implementations.Methods for obtaining a zero-input impedance of a nullifier and reducing its current to almost zero without using earth are described.