This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ...This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.展开更多
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo...After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.展开更多
The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LW...The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.展开更多
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie...We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.展开更多
Based on the limit analysis upper bound method, a new mechanism of soil slope failure has been proposed which was consisted of plastic shear zone and rigid block zone. The different zones interface were regarded as di...Based on the limit analysis upper bound method, a new mechanism of soil slope failure has been proposed which was consisted of plastic shear zone and rigid block zone. The different zones interface were regarded as discontinuity lines. Two sliding blocks of the slope were also incorporated horizontal seismic force and vertical gravity force. The velocities and forces were analyzed in two blocks, and the expression of velocity discontinuities was derived according to the principle of incompressibility. The external force done work for the blocks and the internal energy dissipated of the plastic shear zone and the velocity discontinuous were solved.The stability ratios were derived for the height of two-level slope with different rates to involve seismic and no seismic. The present stability ratios were compared to the previous study, which showed the superiority of the mechanism and the rationality of the analysis. The critical height of the slope can provide a theoretical basis for slope support and design.展开更多
The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidi...The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.展开更多
This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the nume...This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method.展开更多
In this paper, a block method with one hybrid point for solving Jerk equations is presented. The hybrid point is chosen to optimize the local truncation errors of the main formulas for the solution and the derivative ...In this paper, a block method with one hybrid point for solving Jerk equations is presented. The hybrid point is chosen to optimize the local truncation errors of the main formulas for the solution and the derivative at the end of the block. Analysis of the method is discussed, and some numerical examples show that the proposed method is efficient and accurate.展开更多
Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great signi...Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great significance for the improvement of residential environment and the better inheritance of history and culture. Taking Daopashi Street in Anqing City as an example, an evaluation model of landscape spatial vitality of historical and cultural blocks was constructed from three aspects of viewing function, store status and service facilities, and analytic hierarchy process was used to determine the index weight and vaguely evaluate the landscape spatial vitality of historical and cultural blocks. The results show that through the comparison of weight, architectural style(0.317), the practicability of service facilities(0.168) and plant landscape(0.165) had a significant impact on the landscape spatial vitality of historical and cultural blocks,and the landscape spatial vitality of historical and cultural blocks in Daopashi Street in Anqing City was at a good level.展开更多
The instability of slope blocks occurred frequently along traffic corridor in Southeastern Xizang(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock ...The instability of slope blocks occurred frequently along traffic corridor in Southeastern Xizang(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.展开更多
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl...Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.展开更多
Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of te...Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.展开更多
Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number o...Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.展开更多
In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions...In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)展开更多
Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors...Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors (MPP). This paper presents a block variant of the GMRES method for solving general unsymmetric linear systems. It is shown that the new algorithm with block size s, denoted by BVGMRES(s,m), is theoretically equivalent to the GMRES(s. m) method. The numerical results show that this algorithm can be more efficient than the standard GMRES method on a cache based single CPU computer with optimized BLAS kernels. Furthermore, the gain in efficiency is more significant on MPPs due to both efficient block operations and efficient block data communications. Our numerical results also show that in comparison to the standard GMRES method, the more PEs that are used on an MPP, the more efficient the BVGMRES(s,m) algorithm is.展开更多
Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical res...Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.展开更多
Many initial value problems are difficult to be solved using ordinary,explicit step-by-step methods because most of these problems are considered stiff.Certain implicit methods,however,are capable of solving stiff ord...Many initial value problems are difficult to be solved using ordinary,explicit step-by-step methods because most of these problems are considered stiff.Certain implicit methods,however,are capable of solving stiff ordinary differential equations(ODEs)usually found in most applied problems.This study aims to develop a new numerical method,namely the high order variable step variable order block backward differentiation formula(VSVOHOBBDF)for the main purpose of approximating the solutions of third order ODEs.The computational work of the VSVO-HOBBDF method was carried out using the strategy of varying the step size and order in a single code.The order of the proposed method was then discussed in detail.The advancement of this strategy is intended to enhance the efficiency of the proposed method to approximate solutions effectively.In order to confirm the efficiency of the VSVO-HOBBDF method over the two ODE solvers in MATLAB,particularly ode15s and ode23s,a numerical experiment was conducted on a set of stiff problems.The numerical results prove that for this particular set of problem,the use of the proposed method is more efficient than the comparable methods.VSVO-HOBBDF method is thus recommended as a reliable alternative solver for the third order ODEs.展开更多
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy...In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.展开更多
The adaptive simpler block GMRES method was investigated by Zhong et al.(J Comput Appl Math 282:139-156, 2015) where the condition number of the adaptively chosen basis for the Krylov subspace was evaluated. In this p...The adaptive simpler block GMRES method was investigated by Zhong et al.(J Comput Appl Math 282:139-156, 2015) where the condition number of the adaptively chosen basis for the Krylov subspace was evaluated. In this paper, the new upper bound for the condition number is investigated. Numerical tests show that the new upper bound is tighter.展开更多
基金Supported by The Featured Innovation Projects of the General University of Guangdong Province(2023KTSCX096)The Special Projects in Key Areas of Guangdong Province(ZDZX1088)Research Team Project of Guangdong University of Education(2024KYCXTD018)。
文摘This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.
基金funded by the 14th Five-Year Plan Major Science and Technology Project of CNOOC project number KJGG2021-0506.
文摘After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.
基金supported by the Major Research Project on Scientific Instrument Development of the National Natural Science Foundation of China(42327901)National Natural Science Foundation of China(42030806,42074120,41904104,423B2405).
文摘The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.
基金supported by the National Natural Science Foundation of China (Nos.61806107 and 61702135)。
文摘We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.
基金the National Natural Science Foundation of China(No.51478444,51574115 and 51774121)
文摘Based on the limit analysis upper bound method, a new mechanism of soil slope failure has been proposed which was consisted of plastic shear zone and rigid block zone. The different zones interface were regarded as discontinuity lines. Two sliding blocks of the slope were also incorporated horizontal seismic force and vertical gravity force. The velocities and forces were analyzed in two blocks, and the expression of velocity discontinuities was derived according to the principle of incompressibility. The external force done work for the blocks and the internal energy dissipated of the plastic shear zone and the velocity discontinuous were solved.The stability ratios were derived for the height of two-level slope with different rates to involve seismic and no seismic. The present stability ratios were compared to the previous study, which showed the superiority of the mechanism and the rationality of the analysis. The critical height of the slope can provide a theoretical basis for slope support and design.
基金The research of this author was supported by the National Natural Science Foundation of China,the JiangsuProvince Natural Science Foundation,the Jiangsu Province"333Engineering" Foundation and the Jiangsu Province"Qinglan Engineering" Foundation
文摘The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.
文摘This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method.
文摘In this paper, a block method with one hybrid point for solving Jerk equations is presented. The hybrid point is chosen to optimize the local truncation errors of the main formulas for the solution and the derivative at the end of the block. Analysis of the method is discussed, and some numerical examples show that the proposed method is efficient and accurate.
基金the Research on the Application of the Perception Teaching of“Graphics”in Architectural Design Course(JZ213702)Landscape Architecture Stracture(JZ213704)+1 种基金Research on the Teaching of Architectural Design Course for Urban and Rural Planning Major with the concept of“Local Design”(JZ223706)Anhui Provincial Key Laboratory of Huizhou Architecture Open Subjects Funding Project(HPJZ-2020-03).
文摘Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great significance for the improvement of residential environment and the better inheritance of history and culture. Taking Daopashi Street in Anqing City as an example, an evaluation model of landscape spatial vitality of historical and cultural blocks was constructed from three aspects of viewing function, store status and service facilities, and analytic hierarchy process was used to determine the index weight and vaguely evaluate the landscape spatial vitality of historical and cultural blocks. The results show that through the comparison of weight, architectural style(0.317), the practicability of service facilities(0.168) and plant landscape(0.165) had a significant impact on the landscape spatial vitality of historical and cultural blocks,and the landscape spatial vitality of historical and cultural blocks in Daopashi Street in Anqing City was at a good level.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41941019,42177142)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212213).
文摘The instability of slope blocks occurred frequently along traffic corridor in Southeastern Xizang(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.
基金The authors wish to thank National Key R&D Program of China(Grant No.2022YFC308100)the National Nature Science Foundation of China(Grant Nos.42107172 and 42072303)for financial support.
文摘Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.
基金supported by the Innovation Platform Construction of Qinghai Province(No.2016-ZJ-Y04)the Basic Research Program of Qinghai Province(No.2016-ZJ-740)
文摘Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.
基金The project supported by the National Natural Science Foundation of China
文摘Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.
文摘In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)
文摘Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors (MPP). This paper presents a block variant of the GMRES method for solving general unsymmetric linear systems. It is shown that the new algorithm with block size s, denoted by BVGMRES(s,m), is theoretically equivalent to the GMRES(s. m) method. The numerical results show that this algorithm can be more efficient than the standard GMRES method on a cache based single CPU computer with optimized BLAS kernels. Furthermore, the gain in efficiency is more significant on MPPs due to both efficient block operations and efficient block data communications. Our numerical results also show that in comparison to the standard GMRES method, the more PEs that are used on an MPP, the more efficient the BVGMRES(s,m) algorithm is.
基金This research was funded by Fundamental Research Grant Scheme(FRGS)under the Ministry of Higher Education Malaysia,grant number with project ref:FRGS/1/2019/STG06/UTP/03/2.
文摘Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.
基金funded by Fundamental Research Grant Scheme Universiti Sains Malaysia,Grant No.203/PJJAUH/6711688 received by S.A.M.Yatim.Url at http://www.research.usm.my/default.asp?tag=3&f=1&k=1.
文摘Many initial value problems are difficult to be solved using ordinary,explicit step-by-step methods because most of these problems are considered stiff.Certain implicit methods,however,are capable of solving stiff ordinary differential equations(ODEs)usually found in most applied problems.This study aims to develop a new numerical method,namely the high order variable step variable order block backward differentiation formula(VSVOHOBBDF)for the main purpose of approximating the solutions of third order ODEs.The computational work of the VSVO-HOBBDF method was carried out using the strategy of varying the step size and order in a single code.The order of the proposed method was then discussed in detail.The advancement of this strategy is intended to enhance the efficiency of the proposed method to approximate solutions effectively.In order to confirm the efficiency of the VSVO-HOBBDF method over the two ODE solvers in MATLAB,particularly ode15s and ode23s,a numerical experiment was conducted on a set of stiff problems.The numerical results prove that for this particular set of problem,the use of the proposed method is more efficient than the comparable methods.VSVO-HOBBDF method is thus recommended as a reliable alternative solver for the third order ODEs.
文摘In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.
基金This work was supported by the National Natural Science Foundation of China(11701320)the Shandong Provincial Natural Science Foundation of China(ZR2016AM04).
文摘The adaptive simpler block GMRES method was investigated by Zhong et al.(J Comput Appl Math 282:139-156, 2015) where the condition number of the adaptively chosen basis for the Krylov subspace was evaluated. In this paper, the new upper bound for the condition number is investigated. Numerical tests show that the new upper bound is tighter.