期刊文献+
共找到7,059篇文章
< 1 2 250 >
每页显示 20 50 100
A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision
1
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 Sadique Ahmad Naveed Ahmad Muhammad Shahid Anwar Alpamis Kutlimuratov 《Computers, Materials & Continua》 2025年第7期1-24,共24页
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi... Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research. 展开更多
关键词 face recognition algorithms face detection techniques face recognition/detection datasets
在线阅读 下载PDF
Incomplete Physical Adversarial Attack on Face Recognition
2
作者 HU Weitao XU Wujun 《Journal of Donghua University(English Edition)》 2025年第4期442-448,共7页
In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers... In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers in the experiment.In this paper,a simple attack method called incomplete physical adversarial attack(IPAA)is proposed to simulate physical attacks.Different from the process of physical attacks,when an IPAA is conducted,a photo of the adversarial sticker is embedded into a facial image as the input to attack FR systems,which can obtain results similar to those of physical attacks without inviting any volunteers.The results show that IPAA has a higher similarity with physical attacks than digital attacks,indicating that IPAA is able to evaluate the performance of physical attacks.IPAA is effective in quantitatively measuring the impact of the sticker location on the results of attacks. 展开更多
关键词 physical attack digital attack face recognition interferential variable adversarial example
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
3
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
Device-edge collaborative occluded face recognition method based on cross-domain feature fusion
4
作者 Puning Zhang Lei Tan +3 位作者 Zhigang Yang Fengyi Huang Lijun Sun Haiying Peng 《Digital Communications and Networks》 2025年第2期482-492,共11页
The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer a... The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer and the device layer.Besides,previous research fails to consider the facial characteristics including occluded and unoccluded parts.To solve the above problems,we put forward a device-edge collaborative occluded face recognition method based on cross-domain feature fusion.Specifically,the device-edge collaborative face recognition architecture gets the utmost out of maximizes device and edge resources for real-time occluded face recognition.Then,a cross-domain facial feature fusion method is presented which combines both the explicit domain and the implicit domain facial.Furthermore,a delay-optimized edge recognition task scheduling method is developed that comprehensively considers the task load,computational power,bandwidth,and delay tolerance constraints of the edge.This method can dynamically schedule face recognition tasks and minimize recognition delay while ensuring recognition accuracy.The experimental results show that the proposed method achieves an average gain of about 21%in recognition latency,while the accuracy of the face recognition task is basically the same compared to the baseline method. 展开更多
关键词 Occluded face recognition Cross-domain feature fusion Device-edge collaboration
在线阅读 下载PDF
Comprehensive Review and Analysis on Facial Emotion Recognition:Performance Insights into Deep and Traditional Learning with Current Updates and Challenges
5
作者 Amjad Rehman Muhammad Mujahid +2 位作者 Alex Elyassih Bayan AlGhofaily Saeed Ali Omer Bahaj 《Computers, Materials & Continua》 SCIE EI 2025年第1期41-72,共32页
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi... In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research. 展开更多
关键词 face emotion recognition deep learning hybrid learning CK+ facial images machine learning technological development
在线阅读 下载PDF
Sparse representation scheme with enhanced medium pixel intensity for face recognition 被引量:1
6
作者 Xuexue Zhang Yongjun Zhang +3 位作者 Zewei Wang Wei Long Weihao Gao Bob Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期116-127,共12页
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ... Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms. 展开更多
关键词 computer vision face recognition image classification image representation
在线阅读 下载PDF
Generating Adversarial Patterns in Facial Recognition with Visual Camouflage
7
作者 BAO Qirui MEI Haiyang +3 位作者 WEI Huilin LU Zheng WANG Yuxin YANG Xin 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期911-922,共12页
Deep neural networks,especially face recognition models,have been shown to be vulnerable to adversarial examples.However,existing attack methods for face recognition systems either cannot attack black-box models,are n... Deep neural networks,especially face recognition models,have been shown to be vulnerable to adversarial examples.However,existing attack methods for face recognition systems either cannot attack black-box models,are not universal,have cumbersome deployment processes,or lack camouflage and are easily detected by the human eye.In this paper,we propose an adversarial pattern generation method for face recognition and achieve universal black-box attacks by pasting the pattern on the frame of goggles.To achieve visual camouflage,we use a generative adversarial network(GAN).The scale of the generative network of GAN is increased to balance the performance conflict between concealment and adversarial behavior,the perceptual loss function based on VGG19 is used to constrain the color style and enhance GAN’s learning ability,and the fine-grained meta-learning adversarial attack strategy is used to carry out black-box attacks.Sufficient visualization results demonstrate that compared with existing methods,the proposed method can generate samples with camouflage and adversarial characteristics.Meanwhile,extensive quantitative experiments show that the generated samples have a high attack success rate against black-box models. 展开更多
关键词 face recognition adversarial attacks black-box attack camouflage pattern
原文传递
A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance
8
作者 M.Jayasree K.A.Sunitha +3 位作者 A.Brindha Punna Rajasekhar G.Aravamuthan G.Joselin Retnakumar 《Intelligent Automation & Soft Computing》 2024年第4期745-764,共20页
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d... Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses. 展开更多
关键词 face recognition pose variations transfer learning method yaw poses faceNet Inception-v2
在线阅读 下载PDF
Real-Time Face Tracking and Recognition in Video Sequence 被引量:3
9
作者 徐一华 贾云得 +1 位作者 刘万春 杨聪 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期203-207,共5页
A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techni... A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC. 展开更多
关键词 face tracking pattern recognition skin color based eigenface/PCA artificial neural network
在线阅读 下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
10
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
在线阅读 下载PDF
Feature fusing in face recognition 被引量:1
11
作者 于威威 滕晓龙 刘重庆 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期427-431,共5页
With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal... With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree. 展开更多
关键词 face recognition feature fusion global features local features
在线阅读 下载PDF
FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION 被引量:3
12
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期141-147,共7页
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl... Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces. 展开更多
关键词 face recognition principal component analysis (PCA) matrix pattern PCA(MatPCA) fuzzy K-nearest neighbor(FKNN) fuzzy within-class MatPCA(F-WMatPCA)
在线阅读 下载PDF
LOCAL BAGGING AND ITS APPLICATIONON FACE RECOGNITION 被引量:1
13
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期255-260,共6页
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si... Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation. 展开更多
关键词 face recognition local Bagging (L-Bagging) small sample size (SSS) nearest neighbor classifiers
在线阅读 下载PDF
Enhanced kernel minimum squared error algorithm and its application in face recognition
14
作者 赵英男 何祥健 +1 位作者 陈北京 赵晓平 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期35-38,共4页
To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label ... To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC). 展开更多
关键词 minimum squared error kernel minimum squared error pattern recognition face recognition
在线阅读 下载PDF
结合ArcFace与知识蒸馏的口罩人脸识别方法
15
作者 朱周华 王蓓 《计算机应用与软件》 北大核心 2025年第7期167-174,共8页
近几年由于疫情影响,人们在公共场所需严格佩戴口罩,而传统的人脸识别系统无法识别口罩人脸。针对该问题,在ArcFace的基础上做出改进,在人脸特征提取网络IResNet中级联一个眉眼注意力模块和两个CBAM模块,在该网络的基础上使用知识蒸馏... 近几年由于疫情影响,人们在公共场所需严格佩戴口罩,而传统的人脸识别系统无法识别口罩人脸。针对该问题,在ArcFace的基础上做出改进,在人脸特征提取网络IResNet中级联一个眉眼注意力模块和两个CBAM模块,在该网络的基础上使用知识蒸馏的方法。既加快了模型的推理速度,又优化了网络的分类决策与特征映射层,使得戴或不戴口罩都保持同一身份的相似性。在六个不同的基准数据集上进行实验验证,结果表明,口罩人脸识别的精度与速度都有了较大的提升,增强了人脸识别模型在口罩人脸上的性能。 展开更多
关键词 口罩人脸识别 眉眼注意力机制 CBAM 知识蒸馏 IResNet
在线阅读 下载PDF
Faster Region Convolutional Neural Network(FRCNN)Based Facial Emotion Recognition 被引量:1
16
作者 J.Sheril Angel A.Diana Andrushia +3 位作者 TMary Neebha Oussama Accouche Louai Saker N.Anand 《Computers, Materials & Continua》 SCIE EI 2024年第5期2427-2448,共22页
Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on han... Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions. 展开更多
关键词 Facial emotions FRCNN deep learning emotion recognition face CNN
在线阅读 下载PDF
A Robust Face Recognition Method Combining LBP with Multi-mirror Symmetry for Images with Various Face Interferences 被引量:8
17
作者 Shui-Guang Tong Yuan-Yuan Huang Zhe-Ming Tong 《International Journal of Automation and computing》 EI CSCD 2019年第5期671-682,共12页
Face recognition(FR) is a practical application of pattern recognition(PR) and remains a compelling topic in the study of computer vision. However, in real-world FR systems, interferences in images, including illumina... Face recognition(FR) is a practical application of pattern recognition(PR) and remains a compelling topic in the study of computer vision. However, in real-world FR systems, interferences in images, including illumination condition, occlusion, facial expression and pose variation, make the recognition task challenging. This study explored the impact of those interferences on FR performance and attempted to alleviate it by taking face symmetry into account. A novel and robust FR method was proposed by combining multi-mirror symmetry with local binary pattern(LBP), namely multi-mirror local binary pattern(MMLBP). To enhance FR performance with various interferences, the MMLBP can 1) adaptively compensate lighting under heterogeneous lighting conditions, and 2) generate extracted image features that are much closer to those under well-controlled conditions(i.e., frontal facial images without expression). Therefore, in contrast with the later variations of LBP, the symmetrical singular value decomposition representation(SSVDR) algorithm utilizing the facial symmetry and a state-of-art non-LBP method, the MMLBP method is shown to successfully handle various image interferences that are common in FR applications without preprocessing operation and a large number of training images. The proposed method was validated with four public data sets. According to our analysis, the MMLBP method was demonstrated to achieve robust performance regardless of image interferences. 展开更多
关键词 face recognition(FR) local binary pattern(LBP) FACIAL SYMMETRY image INTERFERENCES multi-mirror average
原文传递
Face Image Recognition Based on Convolutional Neural Network 被引量:15
18
作者 Guangxin Lou Hongzhen Shi 《China Communications》 SCIE CSCD 2020年第2期117-124,共8页
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati... With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database. 展开更多
关键词 convolutional neural network face image recognition machine learning artificial intelligence multilayer information fusion
在线阅读 下载PDF
Robust video foreground segmentation and face recognition 被引量:6
19
作者 管业鹏 《Journal of Shanghai University(English Edition)》 CAS 2009年第4期311-315,共5页
Face recognition provides a natural visual interface for human computer interaction (HCI) applications. The process of face recognition, however, is inhibited by variations in the appearance of face images caused by... Face recognition provides a natural visual interface for human computer interaction (HCI) applications. The process of face recognition, however, is inhibited by variations in the appearance of face images caused by changes in lighting, expression, viewpoint, aging and introduction of occlusion. Although various algorithms have been presented for face recognition, face recognition is still a very challenging topic. A novel approach of real time face recognition for HCI is proposed in the paper. In view of the limits of the popular approaches to foreground segmentation, wavelet multi-scale transform based background subtraction is developed to extract foreground objects. The optimal selection of the threshold is automatically determined, which does not require any complex supervised training or manual experimental calibration. A robust real time face recognition algorithm is presented, which combines the projection matrixes without iteration and kernel Fisher discriminant analysis (KFDA) to overcome some difficulties existing in the real face recognition. Superior performance of the proposed algorithm is demonstrated by comparing with other algorithms through experiments. The proposed algorithm can also be applied to the video image sequences of natural HCI. 展开更多
关键词 face recognition human computer interaction (HCI) foreground segmentation face detection THRESHOLD
在线阅读 下载PDF
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
20
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 face recognition Support vector machine Nearest neighbor classifier Principal component analysis.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部