According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. Th...According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.展开更多
Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were estab...Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.展开更多
The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational pri...The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational principle was analyzed. Just like the problem of voltage-unbalance between different levels existing in voltage-source multilevel inverters, a similar problem of current-unbalance between different levels whether for the 8-switch single-phase 5-level current-source inverter, or for the new 6-switch 5-level current-source inverter also exists. A simple current-balance control method via DC current feedback is presented here to implement the current-balance control between different levels. And to reduce the output current harmonics, PWM control technique was used. Simulation and experimental results showed that this new 6-switch topology operates correctly and that the balance-inductor can almost equally distribute the total DC current.展开更多
Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty ...Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty to coexisting with other multivalent activated ions(such as Eu^(3+),Tm^(3+)),which greatly hinders the formation of full spectrum.In this study,a calcium vacancy enhanced self-reduction of Ce^(4+)is realized in CaNaSb_(2)O_(6)F(CNSOF)host under air atmosphere sintering,through which Ce^(3+),Tm^(3+)and Eu^(3+)coexisting in a single-phase full spectrum phosphor was prepared.Notably,the artificial introduction of a calcium vacancy was designed to verify this self-reduction mechanism.Moreover,the energy transfer kinetics among Tm^(3+),Ce^(3+)and Eu^(3+)were explored.Finally,combined with a 340 nm UV chip,a full spectrum phosphor-converted light-emitting diode(pc-LED)was fabricated,showing a broad emission range from 400 to 750 nm,Commission Internationale de I'Edairage(CIE)of(0.3485,0.3673),Ra of 92 and correlated color temperature(CCT)of 4933 K.Utilizing the variation in emission colors of this phosphor under different UV wavelengths,a dual encryption method combining point character code and fluorescent encryption technique is proposed.This work provides an effective path for Ce^(4+)self-reduction to apply in full spectrum pc-LED and information encryption.展开更多
In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220...In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
Single-phase,non-isolated microinverters used in photovoltaic(PV)systems commonly encounter two persistent challenges:High-frequency leakage current and fluctuating power delivery.This paper presents a novel single-ph...Single-phase,non-isolated microinverters used in photovoltaic(PV)systems commonly encounter two persistent challenges:High-frequency leakage current and fluctuating power delivery.This paper presents a novel single-phase,non-isolated,multi-input microinverter topology with a common-ground structure that effectively eliminates ground leakage current without requiring additional active components.The proposed microinverter architecture integrates a dual-boost configuration and uses only four active switches.This is especially advantageous in terms of the component count,which is beneficial to enhance reliability,reduce cost,and simplify the overall system design.With one,two,or four PV inputs,it can operate without interruption under unbalanced voltage or partial shading and even if some inputs drop to zero.A tailored modulation scheme minimizes conduction losses while maintaining a stable direct-current(DC)-link voltage,and a decoupling capacitor efficiently absorbs the single-phase pulsating power,thus overcoming one major limitation in existing microinverter designs.By validating with a 1-kW GaN-based prototype,both the simulated and experimental results demonstrate its high efficiency,robustness,and practical suitability for cost-effective PV applications,with a peak efficiency value of 94.8%.展开更多
Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology ...A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology of La_3 Si_6 N_(11):Dy^(3+)/Tb^(3+) were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The emission colors can be tuned from white to yellow-green through increasing the Tb^(3+) concentration in La_3 Si_6 N_(11):Dy^(3+),Tb^(3+), The mechanism of energy transfer(ET) from Dy^(3+) to Tb^(3+) is confirmed according to the excitation,emission spectra and decay lifetimes curve. The temperaturedependent luminescence measurements of La_(2.83)Si_6 N_(11):0.1 Dy^(3+),0.07 Tb^(3+) were also performed, and a good thermal stability is shown, suggesting superior properties for the application as white lightemitting diodes(w-LEDs) phosphor.展开更多
The microstructure,mechanical property,and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg-1.5Zn-0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy.The results sho...The microstructure,mechanical property,and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg-1.5Zn-0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy.The results show that the Mg-1.5Zn-0.6Zr alloy had a single-phase solid solution structure,with an average grain size of 34.7±13.1μm.The alloy exhibited ultimate tensile strength of 168±2.0 MPa,yield strength of 83±0.6 MPa,and elongation of 9.1±0.6%.Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution.The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg-1.5Zn-0.6Zr alloy than AZ91D.展开更多
This study focuses on the effects of rotational and welding speeds on the microstructure and hardness of joints in friction stir welded single-phase brass. Welds were achieved under low heat input conditions at rotati...This study focuses on the effects of rotational and welding speeds on the microstructure and hardness of joints in friction stir welded single-phase brass. Welds were achieved under low heat input conditions at rotational and welding speeds of 400-800 r/min and 100-300 mm/min, respectively. In order to characterize the obtained welds, optical microscopy and Vickers hardness measurements were taken on the weld cross sections. According to the obtained results, increasing the welding speed and/or decreasing the rotational speed caused the grain size of the stir zone to decrease and, hence, improved the average hardness of this region. These results are discussed with respect to the interplay between the welding parameters and the peak temperature in the weld thermal cycle.展开更多
A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reacti...A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.展开更多
Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well.A mathematical model is developed to simulate flowing pressures and pressure drops ...Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well.A mathematical model is developed to simulate flowing pressures and pressure drops of CBM column from well head to bottom hole.The measured parameters and independent variables of flow rates,flowing pressures and temperatures are involved in CBM producing process along the annulus.The developed relationships are validated against full-scale measured data in single-phase CBM wellbores.The proposed methodology can analyze the dynamic behavior in CBM reservoir and process of CBM flow with an overall accuracy of 2%.The calculating process of flowing pressures involves friction factor with variable Reynolds number and CBM temperature and compressibility factor with gravitational gradients.The results showed that the effect of flowing pressure on CBM column was more obvious than that on CBM and water column accompanied by an increase of dynamic water level.The ratios of flowing pressure on increment of CBM column to the whole column increased with the declined flow rates of water column.Bottom-hole pressure declined with the decreased flowing pressure of CBM column along the annulus.It will lead to the results of the increased pressure drop of CBM column and CBM flow rate in single-phase CBM wellbores.展开更多
Data centers are recognized as one of the most important aspects of the fourth industrial revolution since conventional data centers are inefficient and have dependency on high energy consumption,in which the cooling ...Data centers are recognized as one of the most important aspects of the fourth industrial revolution since conventional data centers are inefficient and have dependency on high energy consumption,in which the cooling is responsible for 40%of the usage.Therefore,this research proposes the immersion cooling method to solving the high energy consumption of data centers by cooling its component using two types of dielectric fluids.Four stages of experimentalmethods are used,such as fluid types,cooling effectiveness,optimization,and durability.Furthermore,benchmark software is used to measure the CPU maximum work with the temperature data performed for 24 h.The results of this study show that the immersion cooling reduces 13℃ lower temperature than the conventional cooling method which means it saves more energy consumption in the data center.The most optimum variable used to decrease the temperature is 1.5 lpm of flow rate and 800 rpm of fan rotation.Furthermore,the cooling performance of the dielectric fluids shows that the mineral oil(MO)is better than the virgin coconut oil(VCO).In durability experiment,there are no components damage after five months immersed in the fluid.展开更多
Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and contr...Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.展开更多
Single-phase Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3)(BTZSHC) high-entropy ceramics(HECs) with the perovskite structure were successfully prepared via the sol-gel method.The results reveal that the as-prepare...Single-phase Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3)(BTZSHC) high-entropy ceramics(HECs) with the perovskite structure were successfully prepared via the sol-gel method.The results reveal that the as-prepared ceramics exhibit a single cubic phase belonging to the Pm3 m space group.The high entropy is the driving force of the formation of single-phase ceramics.A larger entropy(ΔS_(mix)) and a negative enthalpy(ΔH_(mix)) are conducive to the formation of single-phase compounds.Herein,ΔS_(mix)=0.323 R mole-1andΔH_(mix)=43.88 kJ/mol.The sluggish-diffusion effect ensures the thermal stability of high-entropy systems.Dielectric measurements reveal that the as-prepared BTZSHC high-entropy ceramics are relaxor ferroelectrics,and the degree of relaxor(γ) is 1.9.The relaxor behavior of the as-prepared ceramics can be ascribed to the relaxation and thermal evolution of their polar units(PUs).The findings of this work provide a theoretical basis and technical support for the preparation of single-phase high-entropy ceramics.展开更多
Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the l...Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the leakage current in the single-phase low-power PV inverters,a five-level transformer-less inverter is proposed in this paper.A total of eleven switches are required,while six of them only withstand a quarter of the dc-bus voltage,so the costs for them are low.Another four switches are turned on or off at the power line cycle,the switching losses for them are ignored.In addition,the flying-capacitors(FCs)voltages are only a quarter of the dc-bus voltage,and they are balanced at the switching frequency,which further reduces the system investment.The experimental results based on a 1 kW prototype show that the proposed modulation strategy can balance the FCs voltages at Vdc/4 very well.And the leakage current can be reduced to about 27 mA under both active and reactive operations,which satisfies the VDE 0126-1-1 standard.展开更多
To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail tra...To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.展开更多
文摘According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.
基金Project supported by the National Natural Science Foundation of China(Grant No.51107016)the National Basic Research Program of China(Grant No.2013CB035605)the Postdoctoral Science Research Developmental Foundation of Heilongjiang Province,China(Grant No.LHB-Q12086)
文摘Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.
基金Project (No. 50477033) supported by the National Natural ScienceFoundation of China
文摘The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational principle was analyzed. Just like the problem of voltage-unbalance between different levels existing in voltage-source multilevel inverters, a similar problem of current-unbalance between different levels whether for the 8-switch single-phase 5-level current-source inverter, or for the new 6-switch 5-level current-source inverter also exists. A simple current-balance control method via DC current feedback is presented here to implement the current-balance control between different levels. And to reduce the output current harmonics, PWM control technique was used. Simulation and experimental results showed that this new 6-switch topology operates correctly and that the balance-inductor can almost equally distribute the total DC current.
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.
基金Project supported by National Natural Science Foundation of China(62075203,12304460)Zhejiang Provincial Natural Science Foundation of China(LQ23A040007)Basic Public Welfare Research Program of Zhejiang Province(LDT23F05013F05)。
文摘Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty to coexisting with other multivalent activated ions(such as Eu^(3+),Tm^(3+)),which greatly hinders the formation of full spectrum.In this study,a calcium vacancy enhanced self-reduction of Ce^(4+)is realized in CaNaSb_(2)O_(6)F(CNSOF)host under air atmosphere sintering,through which Ce^(3+),Tm^(3+)and Eu^(3+)coexisting in a single-phase full spectrum phosphor was prepared.Notably,the artificial introduction of a calcium vacancy was designed to verify this self-reduction mechanism.Moreover,the energy transfer kinetics among Tm^(3+),Ce^(3+)and Eu^(3+)were explored.Finally,combined with a 340 nm UV chip,a full spectrum phosphor-converted light-emitting diode(pc-LED)was fabricated,showing a broad emission range from 400 to 750 nm,Commission Internationale de I'Edairage(CIE)of(0.3485,0.3673),Ra of 92 and correlated color temperature(CCT)of 4933 K.Utilizing the variation in emission colors of this phosphor under different UV wavelengths,a dual encryption method combining point character code and fluorescent encryption technique is proposed.This work provides an effective path for Ce^(4+)self-reduction to apply in full spectrum pc-LED and information encryption.
文摘In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
基金supported by Libyan Cultural Affair/London,Libya under Grant No.13840.
文摘Single-phase,non-isolated microinverters used in photovoltaic(PV)systems commonly encounter two persistent challenges:High-frequency leakage current and fluctuating power delivery.This paper presents a novel single-phase,non-isolated,multi-input microinverter topology with a common-ground structure that effectively eliminates ground leakage current without requiring additional active components.The proposed microinverter architecture integrates a dual-boost configuration and uses only four active switches.This is especially advantageous in terms of the component count,which is beneficial to enhance reliability,reduce cost,and simplify the overall system design.With one,two,or four PV inputs,it can operate without interruption under unbalanced voltage or partial shading and even if some inputs drop to zero.A tailored modulation scheme minimizes conduction losses while maintaining a stable direct-current(DC)-link voltage,and a decoupling capacitor efficiently absorbs the single-phase pulsating power,thus overcoming one major limitation in existing microinverter designs.By validating with a 1-kW GaN-based prototype,both the simulated and experimental results demonstrate its high efficiency,robustness,and practical suitability for cost-effective PV applications,with a peak efficiency value of 94.8%.
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
基金supported by the National Key Research and Development Plan(2017YFB0404300,2017YFB0404301)
文摘A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology of La_3 Si_6 N_(11):Dy^(3+)/Tb^(3+) were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The emission colors can be tuned from white to yellow-green through increasing the Tb^(3+) concentration in La_3 Si_6 N_(11):Dy^(3+),Tb^(3+), The mechanism of energy transfer(ET) from Dy^(3+) to Tb^(3+) is confirmed according to the excitation,emission spectra and decay lifetimes curve. The temperaturedependent luminescence measurements of La_(2.83)Si_6 N_(11):0.1 Dy^(3+),0.07 Tb^(3+) were also performed, and a good thermal stability is shown, suggesting superior properties for the application as white lightemitting diodes(w-LEDs) phosphor.
基金This project was supported by the National Natural Science Foundation of China(No.51174025)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110006130004).
文摘The microstructure,mechanical property,and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg-1.5Zn-0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy.The results show that the Mg-1.5Zn-0.6Zr alloy had a single-phase solid solution structure,with an average grain size of 34.7±13.1μm.The alloy exhibited ultimate tensile strength of 168±2.0 MPa,yield strength of 83±0.6 MPa,and elongation of 9.1±0.6%.Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution.The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg-1.5Zn-0.6Zr alloy than AZ91D.
文摘This study focuses on the effects of rotational and welding speeds on the microstructure and hardness of joints in friction stir welded single-phase brass. Welds were achieved under low heat input conditions at rotational and welding speeds of 400-800 r/min and 100-300 mm/min, respectively. In order to characterize the obtained welds, optical microscopy and Vickers hardness measurements were taken on the weld cross sections. According to the obtained results, increasing the welding speed and/or decreasing the rotational speed caused the grain size of the stir zone to decrease and, hence, improved the average hardness of this region. These results are discussed with respect to the interplay between the welding parameters and the peak temperature in the weld thermal cycle.
基金supported by the National Natural Science Foundation of China(No.51072233)
文摘A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.
基金This work was financially supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05065-001),Key Research Project of Shandong Province(2019GHY112029 and 2019GSF109090)and Higher Education Research and Development Project of Shandong Province(J17KA033).
文摘Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well.A mathematical model is developed to simulate flowing pressures and pressure drops of CBM column from well head to bottom hole.The measured parameters and independent variables of flow rates,flowing pressures and temperatures are involved in CBM producing process along the annulus.The developed relationships are validated against full-scale measured data in single-phase CBM wellbores.The proposed methodology can analyze the dynamic behavior in CBM reservoir and process of CBM flow with an overall accuracy of 2%.The calculating process of flowing pressures involves friction factor with variable Reynolds number and CBM temperature and compressibility factor with gravitational gradients.The results showed that the effect of flowing pressure on CBM column was more obvious than that on CBM and water column accompanied by an increase of dynamic water level.The ratios of flowing pressure on increment of CBM column to the whole column increased with the declined flow rates of water column.Bottom-hole pressure declined with the decreased flowing pressure of CBM column along the annulus.It will lead to the results of the increased pressure drop of CBM column and CBM flow rate in single-phase CBM wellbores.
基金This work is financially supported by the Ministry of Research and Technology of Indonesia(BRIN)in the project called“Penggunaan Immersion Cooling untukMeningkatkan Efisiensi Energi Data Center”.
文摘Data centers are recognized as one of the most important aspects of the fourth industrial revolution since conventional data centers are inefficient and have dependency on high energy consumption,in which the cooling is responsible for 40%of the usage.Therefore,this research proposes the immersion cooling method to solving the high energy consumption of data centers by cooling its component using two types of dielectric fluids.Four stages of experimentalmethods are used,such as fluid types,cooling effectiveness,optimization,and durability.Furthermore,benchmark software is used to measure the CPU maximum work with the temperature data performed for 24 h.The results of this study show that the immersion cooling reduces 13℃ lower temperature than the conventional cooling method which means it saves more energy consumption in the data center.The most optimum variable used to decrease the temperature is 1.5 lpm of flow rate and 800 rpm of fan rotation.Furthermore,the cooling performance of the dielectric fluids shows that the mineral oil(MO)is better than the virgin coconut oil(VCO).In durability experiment,there are no components damage after five months immersed in the fluid.
基金This work is funded by the Anhui Natural Science Foundation Project of China(under Grant KJ2016A201)the National Natural Science Foundation of China(under Grant 11774378).
文摘Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.
基金financially supported by the National Natural Science Foundation of China (Nos.52102144,52172099)the Provincial Joint Fund of Shaanxi (No.2021JLM-28)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (No.2022JM-255)the Scientific Research Plan Projects of Shaanxi Education Department (No.19JK0525)。
文摘Single-phase Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3)(BTZSHC) high-entropy ceramics(HECs) with the perovskite structure were successfully prepared via the sol-gel method.The results reveal that the as-prepared ceramics exhibit a single cubic phase belonging to the Pm3 m space group.The high entropy is the driving force of the formation of single-phase ceramics.A larger entropy(ΔS_(mix)) and a negative enthalpy(ΔH_(mix)) are conducive to the formation of single-phase compounds.Herein,ΔS_(mix)=0.323 R mole-1andΔH_(mix)=43.88 kJ/mol.The sluggish-diffusion effect ensures the thermal stability of high-entropy systems.Dielectric measurements reveal that the as-prepared BTZSHC high-entropy ceramics are relaxor ferroelectrics,and the degree of relaxor(γ) is 1.9.The relaxor behavior of the as-prepared ceramics can be ascribed to the relaxation and thermal evolution of their polar units(PUs).The findings of this work provide a theoretical basis and technical support for the preparation of single-phase high-entropy ceramics.
基金the National Natural Science Foundation of China Under Grant 51977069the Innovative Talents of“High-Level Talent Gathering Project”of Hunan Province,China Under Grant 2018RS3048+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China Under Grant 2020JJ2007the First Key Research and Talents Preprogram of Changsha,Hunan Province,China Under Grant kq2004020.
文摘Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the leakage current in the single-phase low-power PV inverters,a five-level transformer-less inverter is proposed in this paper.A total of eleven switches are required,while six of them only withstand a quarter of the dc-bus voltage,so the costs for them are low.Another four switches are turned on or off at the power line cycle,the switching losses for them are ignored.In addition,the flying-capacitors(FCs)voltages are only a quarter of the dc-bus voltage,and they are balanced at the switching frequency,which further reduces the system investment.The experimental results based on a 1 kW prototype show that the proposed modulation strategy can balance the FCs voltages at Vdc/4 very well.And the leakage current can be reduced to about 27 mA under both active and reactive operations,which satisfies the VDE 0126-1-1 standard.
文摘To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.