In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently in...In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.展开更多
In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220...In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.展开更多
With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equi...With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi...Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).展开更多
At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of Chi...At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.展开更多
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions...Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).展开更多
Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification ex...Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.展开更多
The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW...The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.展开更多
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoret...The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality.展开更多
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ...Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.展开更多
This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics a...This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%).展开更多
Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD ...Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development.展开更多
Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this...Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.展开更多
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was...Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.展开更多
Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two ...Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings.展开更多
The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(...The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed.展开更多
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr...Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.展开更多
A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology ...A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology of La_3 Si_6 N_(11):Dy^(3+)/Tb^(3+) were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The emission colors can be tuned from white to yellow-green through increasing the Tb^(3+) concentration in La_3 Si_6 N_(11):Dy^(3+),Tb^(3+), The mechanism of energy transfer(ET) from Dy^(3+) to Tb^(3+) is confirmed according to the excitation,emission spectra and decay lifetimes curve. The temperaturedependent luminescence measurements of La_(2.83)Si_6 N_(11):0.1 Dy^(3+),0.07 Tb^(3+) were also performed, and a good thermal stability is shown, suggesting superior properties for the application as white lightemitting diodes(w-LEDs) phosphor.展开更多
基金supported by the Science and Technology Program of China Southern Power Grid(031800KC23120003).
文摘In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.
文摘In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.
基金supported by the National Natural Science Foundation of China(NO.51877018).
文摘With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金funded by the National Natural Science Foundation of China(Grant Nos.:82222068,82070423,82270348,and 82173779)the Innovation Team and Talents Cultivation Pro-gram of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202206)+1 种基金Fujian Province Science and Technology Project,China(Grant Nos.:2021J01420479,2021J02058,2022J011374,and 2022J02057)Fundamental Research Funds for the Chinese Central Universities,China(Grant No.:20720230070).
文摘Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).
文摘At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.
基金National Research Foundation (NRF Investigatorship NRF-NRFI09-0002)Agency for Science,Technology and Research (MTC Programmatic Fund M23L9b0052)。
文摘Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).
文摘Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12374140,12494593,11790312,12004056,11774060,and 92065201)the National Key R&D Program of China(Grant No.2023YFA1406304)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302803)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2022CDJXY-002 and WK9990000103)the New Cornerstone Science Foundation.
文摘The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.
基金the full support of the National Natural Science Foundation of China(62071154,51272052 and50902040)the Natural Science Foundation of Heilongjiang Province of China(LH2020B011 and LH2019B006)the Scientific Research Projects of Basic Scientific Research Operational Expenses of Heilongjiang Provincial Colleges and Universities(2021-KYYWF-0171)。
文摘The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality.
基金supported by Guangxi Science and Technology Program(No.GuiKeAD23026291)Guangxi Science and Technology Major Project(No.AA22068057).
文摘Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.
基金supported by the National Natural Science Foundation of China(Grant No.42275025)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2023084).
文摘This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%).
基金funded by the National Natural Science Foundation of China(No.52374018)Science Foundation of China University of Petroleum,Beijing(No.2462021YJRC009)。
文摘Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development.
基金supported by the the National Natural Science Foundation of China(Grant Nos.12175015 for W.G.and 12174387 for L.Z.)the Chinese Academy of Sciences (Grant Nos.YSBR-057 and JZHKYPT-2021-08 for L.Z.)+1 种基金the Innovative Program for Quantum Science and Technology (Grant No.2021ZD0302600 for L.Z.)the start-up funding of Westlake University and the China Postdoctoral Science Foundation (Grant No.2024M752898 for Z.W.and Z.Y.)。
文摘Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.
基金Supported by Major Instrument Project of National Natural Science Foundation of China(52327803)Major Project of National Natural Science Foundation of China(52192622).
文摘Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.
基金the support of the International Young Scientist Fellowship of the Institute of Physics,Chinese Academy of Sciences (Grant No.202407)supported by the Innovation Program for Quantum Science and Technology (Grant No.2024ZD0301700)+1 种基金the start-up grant at IOP-CAS.ZXL is supported by the Beijing Natural Science Foundation (Grant No.JR25007)the National Natural Science Foundation of China (Grants No.12347107and 12474146)。
文摘Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.23CX03016A and 24CX030009A)。
文摘The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFE0105200)the National Nature Science Foundation of China(Grant No.62405284)+2 种基金the Key Research and Development Program of Henan Province(Grant No.241111220600)the JSPS KAKENHI(Grant No.JP20K14785)the Murata Science Foundation.
文摘Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.
基金supported by the National Key Research and Development Plan(2017YFB0404300,2017YFB0404301)
文摘A novel white-light emitting single-phase phosphor La_3 Si_6 N_(11):Dy^(3+),exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology of La_3 Si_6 N_(11):Dy^(3+)/Tb^(3+) were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The emission colors can be tuned from white to yellow-green through increasing the Tb^(3+) concentration in La_3 Si_6 N_(11):Dy^(3+),Tb^(3+), The mechanism of energy transfer(ET) from Dy^(3+) to Tb^(3+) is confirmed according to the excitation,emission spectra and decay lifetimes curve. The temperaturedependent luminescence measurements of La_(2.83)Si_6 N_(11):0.1 Dy^(3+),0.07 Tb^(3+) were also performed, and a good thermal stability is shown, suggesting superior properties for the application as white lightemitting diodes(w-LEDs) phosphor.