期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential
1
作者 李艳华 熊永建 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期96-100,共5页
We present a theoretical study of quantum charge pumping in metallic armchair graphene nanoribbons using the Floquet Green function method. A central part of the ribbon acting as the scattering region is supposed to h... We present a theoretical study of quantum charge pumping in metallic armchair graphene nanoribbons using the Floquet Green function method. A central part of the ribbon acting as the scattering region is supposed to have staggered sublattiee potential to open a finite band gap. A single ae gate is asymmetrically applied to a part of the scattering region to drive the pumping. Corresponding to the gap edges, there are two pumped current peaks with opposite current directions, which can be reversed by changing the position of the ac gate relative to the scattering region. The effects of the parameters, such as the staggered sublattice potential, the driving frequency and the geometric parameters of the structure, on the pumping are discussed. 展开更多
关键词 single-parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential
原文传递
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning 被引量:1
2
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
在线阅读 下载PDF
Dynamics and circuit implementation of three simplified chaotic systems 被引量:1
3
作者 孙克辉 王艳丽 朱从旭 《Journal of Central South University》 SCIE EI CAS 2013年第3期663-669,共7页
To improve the performance of chaotic secure communication,three simplified chaotic systems with one variable parameter were investigated.Basic properties were analyzed including symmetry,dissipation and topological s... To improve the performance of chaotic secure communication,three simplified chaotic systems with one variable parameter were investigated.Basic properties were analyzed including symmetry,dissipation and topological structure.Complex dynamical behaviors of the systems including chaos and periodic orbits were verified by numerical simulations,Lyapunov exponents and bifurcation diagrams.Interestingly,the three systems were integrated in a common circuit,and their dynamical behaviors were easily observed by adjusting regulable resistors R28,R14 and R17,respectively,and the relations between the variable resistor and the system parameter were deduced.The circuit experiment results agree well with the simulation results.Finally,a secure communication scheme based on chaos shift keying(CSK) was presented,which lays an experiment foundation for chaotic digital secure communication. 展开更多
关键词 CHAOS single-parameter system circuit realization secure communication chaos shift keying
在线阅读 下载PDF
New initial condition of the new agegraphic dark energy model
4
作者 李云鹤 张敬飞 张鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期561-566,共6页
The initial condition Ωde(zini)=n^2(1+zini)^-2/4 at zini = 2000,widely used to solve the differential equation of the density of the new agegraphic dark energy(NADE) Ωde,makes the NADE model a single-paramete... The initial condition Ωde(zini)=n^2(1+zini)^-2/4 at zini = 2000,widely used to solve the differential equation of the density of the new agegraphic dark energy(NADE) Ωde,makes the NADE model a single-parameter dark-energy cosmological model.However,we find that this initial condition is only applicable in a flat universe with only dark energy and pressureless matter.In fact,in order to obtain more information from current observational data,such as the cosmic microwave background(CMB) and the baryon acoustic oscillations(BAO),we need to consider the contribution of radiation.For this situation,the initial condition mentioned above becomes invalid.To overcome this shortcoming,we investigate the evolutions of dark energy in matter-dominated and radiation-dominated epochs,and obtain a new initial condition de(zini)=n2(1+zini)-2(1+F(zini))2/4 at z ini = 2000,where F(z)≡Ωr0(1+z)/[Ωm0+Ωr0(1+z)] with Ωr0 and Ωm0 being the current density parameters of radiation and pressureless matter,respectively.This revised initial condition is applicable for the differential equation of Ωde obtained in the standard Friedmann-Robertson-Walker(FRW) universe with dark energy,pressureless matter,radiation,and even spatial curvature,and can still keep the NADE model as a single-parameter model.With the revised initial condition and the observational data of type Ia supernova(SNIa),CMB,and BAO,we finally constrain the NADE model.The results show that the single free parameter n of the NADE model can be constrained tightly. 展开更多
关键词 new agegraphic dark energy model initial condition single-parameter model observational constraints
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部