The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit mode...Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.展开更多
Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate ...Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.展开更多
With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clusterin...With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clustering-based equivalent model is proposed for the wind farm with numerous doubly fed induction generators.In the proposed model,active power together with the reactive power and the wind speed are selected to form the set of clustering indicators.A normalization technique is utilized to cope with the multiple orders of magnitude in these factors.An exponential fitness value is formulated as a function of the sorting number of the primary fitness value,and the fitness-based selection probability is constructed to overcome the property of premature and slow convergence of the genetic clustering algorithm.The sum of squares due to error is used to determine the optimal clustering number.In addition,a decoupled parameter equivalence method is adopted to obtain the equivalent parameters of the collection network.Simulation results and comparisons with various methods under different voltage scenarios show the feasibility and effectiveness of the proposed model.展开更多
A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS...Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS) with numerous sliding interfaces.Based on the concept of subsystems,an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed.The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages.An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the fi rst represents the concave sliding interfaces above the slider,and the second represents those below the slider.The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series.The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou.Furthermore,these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces,which may have any number of sliding interfaces,is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.展开更多
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn...In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.展开更多
With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in ...With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.展开更多
In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contr...In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.展开更多
The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with...The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.展开更多
The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same...The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.展开更多
This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through th...This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through the aquitard . It is applied to evaluate the maximum rate of groundwater resources exploited from the coastal aquifer without seawater intrusion . The main task in this model is to determine the drainage boundary of the aquifer extending under the sea . The information of the boundary can be obtained from the fluctuations of the groundwater level caused by sea-tide fluctuations . A new idea, Equivalent Drainage Boundary (EDB), is proposed and the corresponding methods , determining the EDB, are developed with tidal fluctuations data observed in boreholes . The quasi 3-D model and the methods determining EDB have been applied to the aquifer system of Beihai peninsula , Guangxi Autonomous Region of China for calculating the available groundwater resources .展开更多
This work established a new analytical model based upon the equivalent constraint model (ECM) to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain respo...This work established a new analytical model based upon the equivalent constraint model (ECM) to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain response of general symmetric laminates subjected to combined loading, by taking into account the effect of matrix cracking. The ECM was adopted to mainly predict the in-plane stiffness reduction of the damaged laminate. Basic consideration that progressive matrix cracking provokes a re-distribution of the stress fields on each lamina within laminates, which greatly deteriorates the stress distributed in the primary load-bearing lamina and leads to the final failure of the laminates, is introduced for the construction of the failure criterion. The effects of lamina properties, lay-up configurations and loading conditions on the behaviors of the laminates were examined in this paper. A comparison of numerical results obtained from the established model and other existed models and published experimental data was presented for different material systems. The theory predictions demonstrated great match with the experimental observations investigated in this study.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
An equivalent mechanical model with the equivalent physical meaning of mass-spring-damping is proposed for cylindrical lithium-ion batteries through experiments and theory.The equivalent mechanical model of a cylindri...An equivalent mechanical model with the equivalent physical meaning of mass-spring-damping is proposed for cylindrical lithium-ion batteries through experiments and theory.The equivalent mechanical model of a cylindrical lithium-ion battery consists of a spring-damping parallel unit.Therefore,a spring-damping parallel unit connecting a damping unit in series is selected to construct the constitutive characteristics of the battery under mechanical abuse.Comparison results show that the equivalent mechanical model can more effectively describe the mechanical properties of the batteries than most cubic fitting models,of which the average relative error of the equivalent mechanical model under different states-of-charge is less than 6.75%.Combined with the proposed equivalent mechanical model,the failure process of the batteries was simulated and analyzed using LS-Dyna and HyperWorks.Under rigid rod tests,failure occurred at the core and bottom of the batteries;under hemispherical punch tests,failure occurred at the core and top,consistent with the experimental results.The average prediction error for the failure displacement under different abuse conditions is less than 4%in the simulations.The equivalent mechanical model requires only a few parameters and can be recognized easily.In the future,the model can be used in safety warning devices based on mechanical penetration.展开更多
Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice ...Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.展开更多
The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high...The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.展开更多
Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based...Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based on the three-dimensional finite element method(3D FEM)due to its three-dimensional magnetic field distribution.However,the 3D FEM suffers large amount of calculation,time-consuming and is not suitable for the optimization of AFPMSM.Addressing this issue,a multi-layer quasi three-dimensional equivalent model of the AFPMSM is investigated in this paper,which could take the end leakage into consideration.Firstly,the multi-layer quasi three-dimensional equivalent model of the AFPMSM with single stator and single rotor is derived in details,including the equivalent processes and conversions of structure dimensions,motion conditions and electromagnetic parameters.Then,to consider the influence of end leakage on the performance,a correction factor is introduced in the multi-layer quasi three-dimensional equivalent model.Finally,the proposed multi-layer quasi three-dimensional equivalent model is verified by the 3D FEM based on an AFPMSM under different structure parameters.It demonstrates that the errors of flux linkage and average torque obtained by the multi-layer quasi three-dimensional equivalent model and 3D FEM are only around 2%although the structure parameters of the AFPMSM are varied.Besides,the computation time of one case based on the multi-layer quasi three-dimensional equivalent model is only 6 min,which is much less than that of the 3D FEM,1.8 h,under the same conditions.Thus,the proposed multi-layer quasi three-dimensional equivalent model could be used to optimize the AFPMSM and much time could be saved by this method compared with the 3D FEM.展开更多
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas...High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101005,12475202,12347131,and 12405289).
文摘Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.
基金National Natural Science Foundation of China under Grant No.U2139208。
文摘Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.
基金the National Key R&D Program of China(No.2019YFE0114700)the Key R&D Program in Hunan Province of China(No.2021GK2020)+1 种基金the Natural Science Foundation of Hunan Province of China(No.2021JJ30079)the Project of Philosophy and Social Science Research in Yiyang City(No.2022YS191)。
文摘With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clustering-based equivalent model is proposed for the wind farm with numerous doubly fed induction generators.In the proposed model,active power together with the reactive power and the wind speed are selected to form the set of clustering indicators.A normalization technique is utilized to cope with the multiple orders of magnitude in these factors.An exponential fitness value is formulated as a function of the sorting number of the primary fitness value,and the fitness-based selection probability is constructed to overcome the property of premature and slow convergence of the genetic clustering algorithm.The sum of squares due to error is used to determine the optimal clustering number.In addition,a decoupled parameter equivalence method is adopted to obtain the equivalent parameters of the collection network.Simulation results and comparisons with various methods under different voltage scenarios show the feasibility and effectiveness of the proposed model.
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
文摘Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS) with numerous sliding interfaces.Based on the concept of subsystems,an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed.The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages.An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the fi rst represents the concave sliding interfaces above the slider,and the second represents those below the slider.The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series.The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou.Furthermore,these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces,which may have any number of sliding interfaces,is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No10602055)Nature Science Foundation of China Jiliang University (Grant No XZ0501)
文摘In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.
基金Project(51507073)supported by the National Natural Science Foundation of China。
文摘With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.
基金supported by the State Key Development Program for Basic Research of China (Grant Nos. 2007CB512100 and2006CB601007)the National Natural Science Foundation of China (Grant No. 10674006)+2 种基金the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)China Postdoctoral Science Foundation (Grant No. 20090461376)the Fundamental Research Funds for the Central Universities (Grant No. KYJD09001)
文摘In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.
基金This work was supported by the National Natural Science Foundation of China(Grants 11702146,11732006 and 11827801)the Equipment Pre-research Foundation(Grant 6140210010202).
文摘The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.
文摘The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.
文摘This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through the aquitard . It is applied to evaluate the maximum rate of groundwater resources exploited from the coastal aquifer without seawater intrusion . The main task in this model is to determine the drainage boundary of the aquifer extending under the sea . The information of the boundary can be obtained from the fluctuations of the groundwater level caused by sea-tide fluctuations . A new idea, Equivalent Drainage Boundary (EDB), is proposed and the corresponding methods , determining the EDB, are developed with tidal fluctuations data observed in boreholes . The quasi 3-D model and the methods determining EDB have been applied to the aquifer system of Beihai peninsula , Guangxi Autonomous Region of China for calculating the available groundwater resources .
基金supported by the Natural Science Foundation Project of CQ CSTC(No.2009BB4290)the National Natural Science Foundation of China(No.10772105)the National Natural Science Association Foundation(NSAF) of China (No.10776023).
文摘This work established a new analytical model based upon the equivalent constraint model (ECM) to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain response of general symmetric laminates subjected to combined loading, by taking into account the effect of matrix cracking. The ECM was adopted to mainly predict the in-plane stiffness reduction of the damaged laminate. Basic consideration that progressive matrix cracking provokes a re-distribution of the stress fields on each lamina within laminates, which greatly deteriorates the stress distributed in the primary load-bearing lamina and leads to the final failure of the laminates, is introduced for the construction of the failure criterion. The effects of lamina properties, lay-up configurations and loading conditions on the behaviors of the laminates were examined in this paper. A comparison of numerical results obtained from the established model and other existed models and published experimental data was presented for different material systems. The theory predictions demonstrated great match with the experimental observations investigated in this study.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
基金Supported by National Key R&D Program of China(Grant No.2017YFB0103801).
文摘An equivalent mechanical model with the equivalent physical meaning of mass-spring-damping is proposed for cylindrical lithium-ion batteries through experiments and theory.The equivalent mechanical model of a cylindrical lithium-ion battery consists of a spring-damping parallel unit.Therefore,a spring-damping parallel unit connecting a damping unit in series is selected to construct the constitutive characteristics of the battery under mechanical abuse.Comparison results show that the equivalent mechanical model can more effectively describe the mechanical properties of the batteries than most cubic fitting models,of which the average relative error of the equivalent mechanical model under different states-of-charge is less than 6.75%.Combined with the proposed equivalent mechanical model,the failure process of the batteries was simulated and analyzed using LS-Dyna and HyperWorks.Under rigid rod tests,failure occurred at the core and bottom of the batteries;under hemispherical punch tests,failure occurred at the core and top,consistent with the experimental results.The average prediction error for the failure displacement under different abuse conditions is less than 4%in the simulations.The equivalent mechanical model requires only a few parameters and can be recognized easily.In the future,the model can be used in safety warning devices based on mechanical penetration.
文摘Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.
基金the financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123)the National Key Laboratory of Science and Technology on Vacuum Technology&Physics(No.ZWK1608)+1 种基金the Advanced Space Propulsion Laboratory of BICEBeijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2018-03)。
文摘The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.
基金the National Natural Science Foundation of China Grant No.52007055 and in part by the Fundamental Research Funds for the Central Universities under Grant 531118010386.
文摘Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based on the three-dimensional finite element method(3D FEM)due to its three-dimensional magnetic field distribution.However,the 3D FEM suffers large amount of calculation,time-consuming and is not suitable for the optimization of AFPMSM.Addressing this issue,a multi-layer quasi three-dimensional equivalent model of the AFPMSM is investigated in this paper,which could take the end leakage into consideration.Firstly,the multi-layer quasi three-dimensional equivalent model of the AFPMSM with single stator and single rotor is derived in details,including the equivalent processes and conversions of structure dimensions,motion conditions and electromagnetic parameters.Then,to consider the influence of end leakage on the performance,a correction factor is introduced in the multi-layer quasi three-dimensional equivalent model.Finally,the proposed multi-layer quasi three-dimensional equivalent model is verified by the 3D FEM based on an AFPMSM under different structure parameters.It demonstrates that the errors of flux linkage and average torque obtained by the multi-layer quasi three-dimensional equivalent model and 3D FEM are only around 2%although the structure parameters of the AFPMSM are varied.Besides,the computation time of one case based on the multi-layer quasi three-dimensional equivalent model is only 6 min,which is much less than that of the 3D FEM,1.8 h,under the same conditions.Thus,the proposed multi-layer quasi three-dimensional equivalent model could be used to optimize the AFPMSM and much time could be saved by this method compared with the 3D FEM.
基金funded by National Natural Science Foundation of China(U1839207,U1939205)the earthquake tracking directional work task of China Earthquake Administration(No.DZ2022010214)+1 种基金Key project of Spark Program of Seismic Science and Technology of China Earthquake Administration(No.XH20008)S&T Program of Hebei(21375411D)。
文摘High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.