A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co...A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the...A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the system.展开更多
Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters....Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters.Among these factors,azimuth,inclination angle,and mud weight are controllable.The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required(GMMPR).Genetic algorithm(GA) was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required(MMPR).The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area(NYZA).To reduce computation expenses,an artificial neural network(ANN) was used as a proxy(surrogate model) to approximate the behavior of the actual wellbore model.The methodology was applied to a directional well in southwestern Iranian oilfield.The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4%for elastoplastic method,and 22%for conventional elastic solution.展开更多
In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurca...In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurcation condition of the new SAM is derived through linear analysis and bifurcation analysis,and then accurate range of stable region is obtained.In order to explore the mechanism of the influence of multiple parameter combinations on the stability of controlled systems,a definite integral stabilization method is provided to determine the stable interval of time delay and feedback gain.Numerical simulations are explored to verify the feasibility and effectiveness of the proposed model,which also demonstrate that feedback gain and delay are two key factors to alleviate traffic congestion in the SAM.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuz...T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.展开更多
The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order ...The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.展开更多
This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that t...This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that the coexistence of two competing organisms may be achieved as a stable positive equilibrium or a stable positive periodic solution by different feedback schedules. In the stochastic case, based on the stochastic sensitivity function technique,we construct the confidence domains for different feedback schedules which allow us to find the configurational arrangements of the stochastic attractors and analyze the dispersion of the random states of the stochastic model.展开更多
In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^...In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^([3, 4])model of the bioreactor.This is achieved by using the LWN model as a deviation model and by successively linearising the deviation model along the state trajectory. For reducing the approximation error and to improve the controller performance, symbolic derivation algorithm, viz.,automatic differentiation is employed. A cautionary note is also given on the fragility of the output feedback mixed H2/H∞ model predictive controller^([4, 5])due to its sensitivity to its own parametric changes.展开更多
For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algor...For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.展开更多
This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obt...This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.展开更多
In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the p...In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the proposed model and its numerical solutions are studied rigorously.By using the Lyapunov direct method for fractional dynamical systems and a suitable Lyapunov function,we show that a unique positive equilibrium point of the new model is asymptotically stable.As an important consequence of this,we obtain a new mathematical model in which the feedback control variables only change the position of the unique positive equilibrium point of the original model but retain its asymptotic stability.Furthermore,we construct unconditionally positive nonstandard finite difference(NSFD)schemes for the proposed model using the Mickens’methodology.It is worth noting that the constructed NSFD schemes not only preserve the positivity but also provide reliable numerical solutions that correctly reflect the dynamics of the new fractional-order model.Finally,we report some numerical examples to support and illustrate the theoretical results.The results indicate that there is a good agreement between the theoretical results and numerical ones.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fl...This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fluid transfer, and intercellular fractional mass of Oxygen, cell acidity and Pancreatin enzyme. The overall dynamics stability, controllability and observability have been investigated. Moreover, Cesium therapy is considered as a control input to the 11-dimensional dynamics using state-feedback controlled system and pole placement technique. This approach is found to be effective in driving the desired rate of tumor cell kill and converging the system to healthy equilibrium state. Furthermore, the ranges of the system dynamics parameters which lead to instability and growth of tumor cells have been identified. Finally, simulation results are demonstrated to verify the effectiveness of the applied approach which can be implemented successfully to cancer patients.展开更多
The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furt...The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input^utput feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaUer errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov- based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.展开更多
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented...This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.展开更多
Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the ve...Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.展开更多
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde...Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.展开更多
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controlle...Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.展开更多
基金Supported by Natural Science Foundation of China(Grant Nos.52072051,51705044)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956)+1 种基金State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202016)State Key Laboratory of Mechanical Transmissions(Grant No.SKLMT-KFKT-201806).
文摘A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金Supported by the Program of Fujian Technology Innovation Platform(2009J1007)
文摘A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the system.
文摘Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters.Among these factors,azimuth,inclination angle,and mud weight are controllable.The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required(GMMPR).Genetic algorithm(GA) was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required(MMPR).The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area(NYZA).To reduce computation expenses,an artificial neural network(ANN) was used as a proxy(surrogate model) to approximate the behavior of the actual wellbore model.The methodology was applied to a directional well in southwestern Iranian oilfield.The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4%for elastoplastic method,and 22%for conventional elastic solution.
基金supported by the National Key Research and Development Program of China(No.2017YFE9134700)the Natural Science Foundation of Zhejiang Province,China(No.LY22G010001)+3 种基金the Program of Humanities and Social Science of Education Ministry of China(No.20YJA630008)the Ningbo Natural Science Foundation of China(Nos.2021J235 and 2021J111)the Fund of Healthy&Intelligent Kitchen Engineering Research Center of Zhejiang Provincethe K.C.Wong Magna Fund in Ningbo University,China.
文摘In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurcation condition of the new SAM is derived through linear analysis and bifurcation analysis,and then accurate range of stable region is obtained.In order to explore the mechanism of the influence of multiple parameter combinations on the stability of controlled systems,a definite integral stabilization method is provided to determine the stable interval of time delay and feedback gain.Numerical simulations are explored to verify the feasibility and effectiveness of the proposed model,which also demonstrate that feedback gain and delay are two key factors to alleviate traffic congestion in the SAM.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
文摘T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.
基金supported by National Natural Science Foundation of China(No.50475011).
文摘The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.
基金Supported by the National Natural Science Foundation of China(11671260,11801224)Natural Science Foundation of Jiangsu Province(BK20180856)
文摘This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that the coexistence of two competing organisms may be achieved as a stable positive equilibrium or a stable positive periodic solution by different feedback schedules. In the stochastic case, based on the stochastic sensitivity function technique,we construct the confidence domains for different feedback schedules which allow us to find the configurational arrangements of the stochastic attractors and analyze the dispersion of the random states of the stochastic model.
文摘In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^([3, 4])model of the bioreactor.This is achieved by using the LWN model as a deviation model and by successively linearising the deviation model along the state trajectory. For reducing the approximation error and to improve the controller performance, symbolic derivation algorithm, viz.,automatic differentiation is employed. A cautionary note is also given on the fragility of the output feedback mixed H2/H∞ model predictive controller^([4, 5])due to its sensitivity to its own parametric changes.
文摘For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.
基金Supported by the Foundation of Fujian Education Bureau(JA13361)Supported by the National Natural Science Foundation of Fujian Province(2013J01010)
文摘This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.
文摘In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the proposed model and its numerical solutions are studied rigorously.By using the Lyapunov direct method for fractional dynamical systems and a suitable Lyapunov function,we show that a unique positive equilibrium point of the new model is asymptotically stable.As an important consequence of this,we obtain a new mathematical model in which the feedback control variables only change the position of the unique positive equilibrium point of the original model but retain its asymptotic stability.Furthermore,we construct unconditionally positive nonstandard finite difference(NSFD)schemes for the proposed model using the Mickens’methodology.It is worth noting that the constructed NSFD schemes not only preserve the positivity but also provide reliable numerical solutions that correctly reflect the dynamics of the new fractional-order model.Finally,we report some numerical examples to support and illustrate the theoretical results.The results indicate that there is a good agreement between the theoretical results and numerical ones.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.
文摘This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fluid transfer, and intercellular fractional mass of Oxygen, cell acidity and Pancreatin enzyme. The overall dynamics stability, controllability and observability have been investigated. Moreover, Cesium therapy is considered as a control input to the 11-dimensional dynamics using state-feedback controlled system and pole placement technique. This approach is found to be effective in driving the desired rate of tumor cell kill and converging the system to healthy equilibrium state. Furthermore, the ranges of the system dynamics parameters which lead to instability and growth of tumor cells have been identified. Finally, simulation results are demonstrated to verify the effectiveness of the applied approach which can be implemented successfully to cancer patients.
基金co-supported by the National Natural Science Foundation of China (No. 60904038)the Aeronautical Science Foundation of China (Nos. 20141396012 and 20121396008)
文摘The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input^utput feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaUer errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov- based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.
文摘This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060, 10602025 and 10802042)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2007A610050, 2009A610014 and 2009A610154)K.C. Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
基金National Natural Science Foundation of China (10902082)New Faculty Research Foundation of XJTUthe Fundamental Research Funds for the Central Universities (xjj20100126)
文摘Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.
基金Supported by the National Natural Science Foundation of China (61104084, 61290323)the Guangdong Education University-Industry Cooperation Projects (2010B090400410)
文摘Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.