期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-scale enhancement and aggregation network for singleimage deraining
1
作者 Rui Zhang Yuetong Liu +3 位作者 Huijian Han Yong Zheng Tao Zhang Yunfeng Zhang 《Computational Visual Media》 2025年第1期213-226,共14页
Rain streaks in an image appear in different sizes and orientations,resulting in severe blurring and visual quality degradation.Previous CNNbased algorithms have achieved encouraging deraining results although there a... Rain streaks in an image appear in different sizes and orientations,resulting in severe blurring and visual quality degradation.Previous CNNbased algorithms have achieved encouraging deraining results although there are certain limitations in the description of rain streaks and the restoration of scene structures in different environments.In this paper,we propose an efficient multi-scale enhancement and aggregation network(MEAN)to solve the single-image deraining problem.Considering the importance of large receptive fields and multi-scale features,we introduce a multi-scale enhanced unit(MEU)to capture longrange dependencies and exploit features at different scales to depict rain.Simultaneously,an attentive aggregation unit(AAU)is designed to utilize the informative features in spatial and channel dimensions,thereby aggregating effective information to eliminate redundant features for rich scenario details.To improve the deraining performance of the encoder–decoder network,we utilized an AAU to filter the information in the encoder network and concatenated the useful features to the decoder network,which is conducive to predicting high-quality clean images.Experimental results on synthetic datasets and real-world samples show that the proposed method achieves a significant deraining performance compared to state-of-the-art approaches. 展开更多
关键词 single-image deraining multi-scale enhan-cement and aggregation(MEA) encoder-decoder network
原文传递
Single image super-resolution:a comprehensive review and recent insight
2
作者 Hanadi AL-MEKHLAFI Shiguang LIU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第1期139-156,共18页
Super-resolution(SR)is a long-standing problem in image processing and computer vision and has attracted great attention from researchers over the decades.The main concept of SR is to reconstruct images from low-resol... Super-resolution(SR)is a long-standing problem in image processing and computer vision and has attracted great attention from researchers over the decades.The main concept of SR is to reconstruct images from low-resolution(LR)to high-resolution(HR).It is an ongoing process in image technology,through up-sampling,de-blurring,and de-noising.Convolution neural network(CNN)has been widely used to enhance the resolution of images in recent years.Several alternative methods use deep learning to improve the progress of image super-resolution based on CNN.Here,we review the recent findings of single image super-resolution using deep learning with an emphasis on distillation knowledge used to enhance image super-resolution.,it is also to highlight the potential applications of image super-resolution in security monitoring,medical diagnosis,microscopy image processing,satellite remote sensing,communication transmission,the digital multimedia industry and video enhancement.Finally,we present the challenges and assess future trends in super-resolution based on deep learning. 展开更多
关键词 SUPER-RESOLUTION deep learning single-image interpolation-based learning-based reconstruction-based
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部