The paper presents a novel multi-level model for quasi-brittle cracking analysis.Based on the partition of unity and information transmission technology,it provides a new non-re-meshing way to describe the cracking ph...The paper presents a novel multi-level model for quasi-brittle cracking analysis.Based on the partition of unity and information transmission technology,it provides a new non-re-meshing way to describe the cracking phenomenon in structures constructed from materials with complex microstructures.In the global model,the concept of the material particle is defined and the basic unknowns are the boundary displacements of these particles,which is different from the concept of the traditional displacement field.A series of enrichment functions with continuous steps is proposed,describing the boundary displacement affected by crack bands and allowing the intersections of crack bands with particle boundaries a priori unknown.Simultaneously,additional equations are introduced to determine element status and make the degrees of freedom of the global model remain at a stable level.Compared with previous research by our group,where the local description is equal to the global description on the boundary of a material particle,the introduced enrichment functions enable more accurate capture of the characteristics of the crack band.The model avoids the complex and dynamic model adjustments due to the activation and exit of representative volume elements(RVEs)and the accuracy of the description of the crack pattern can be ensured.The RVEs are activated at first,but then many of them exit the computation due to the unloading which reduces many of the degrees of freedom.Two examples of concrete specimens are analyzed,and the concrete fracture experiment and the digital image correlation(DIC)test are conducted.Compared with the reference solutions and the experimental data,even though the microstructure of concrete is very complex,the cracking process and crack pattern can be obtained accurately.展开更多
Improved gray-scale (IGS) quantization is a known method for re-quantizing digital gray-scale images for data compression while producing halftones by adding a level of randomness to improve visual quality of the resu...Improved gray-scale (IGS) quantization is a known method for re-quantizing digital gray-scale images for data compression while producing halftones by adding a level of randomness to improve visual quality of the resultant images. In this paper, first, analyzing the IGS quantizing operations reveals the capability of conserving a DC signal level of a source image through the quantization. Then, a complete procedure for producing a multi-level halftone image by IGS quantization that can achieve the DC conservation is presented. Also, the procedure uses the scanning of source pixels in an order such that geometric patterns can be prevented from occurring in the resulting halftone image. Next, the performance of the multi-level IGS halftoning is evaluated by experiments conducted on 8-bit gray-scale test images in comparison with the halftoning by error diffusion. The experimental result demonstrates that a signal level to be quantized in the IGS halftoning varies more randomly than that in the error diffusion halftoning, but not entirely randomly. Also, visual quality of the resulting halftone images was measured by subjective evaluations of viewers. The result indicates that for 3 or more-bit, in other words, 8 or more-level halftones, the IGS halftoning achieves image quality comparable to that by the error diffusion.展开更多
This study aims to improve control schemes for COVID-19 by a numerical model with estimation of parameters.We established a multi-level and multi-objective nonlinear SEIDR model to simulate the virus transmission.The ...This study aims to improve control schemes for COVID-19 by a numerical model with estimation of parameters.We established a multi-level and multi-objective nonlinear SEIDR model to simulate the virus transmission.The early spread in Japan was adopted as a case study.The first 96 days since the infection were divided into five stages with parameters estimated.Then,we analyzed the trend of the parameter value,age structure ratio,and the defined PCR test index(standardization of the scale of PCR tests).It was discovered that the self-healing rate and confirmed rate were linear with the age structure ratio and the PCR test index using the stepwise regression method.The transmission rates were related to the age structure ratio,PCR test index,and isolation efficiency.Both isolation measures and PCR test medical screening can effectively reduce the number of infected cases based on the simulation results.However,the strategy of increasing PCR test medical screening would encountered a bottleneck effect on the virus control when the index reached 0.3.The effectiveness of the policy would decrease and the basic reproduction number reached the extreme value at 0.6.This study gave a feasible combination for isolation and PCR test by simulation.The isolation intensity could be adjusted to compensate the insufficiency of PCR test to control the pandemic.展开更多
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing...This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.展开更多
基金supported by the National Natural Science Foundation of China(No.51878154)。
文摘The paper presents a novel multi-level model for quasi-brittle cracking analysis.Based on the partition of unity and information transmission technology,it provides a new non-re-meshing way to describe the cracking phenomenon in structures constructed from materials with complex microstructures.In the global model,the concept of the material particle is defined and the basic unknowns are the boundary displacements of these particles,which is different from the concept of the traditional displacement field.A series of enrichment functions with continuous steps is proposed,describing the boundary displacement affected by crack bands and allowing the intersections of crack bands with particle boundaries a priori unknown.Simultaneously,additional equations are introduced to determine element status and make the degrees of freedom of the global model remain at a stable level.Compared with previous research by our group,where the local description is equal to the global description on the boundary of a material particle,the introduced enrichment functions enable more accurate capture of the characteristics of the crack band.The model avoids the complex and dynamic model adjustments due to the activation and exit of representative volume elements(RVEs)and the accuracy of the description of the crack pattern can be ensured.The RVEs are activated at first,but then many of them exit the computation due to the unloading which reduces many of the degrees of freedom.Two examples of concrete specimens are analyzed,and the concrete fracture experiment and the digital image correlation(DIC)test are conducted.Compared with the reference solutions and the experimental data,even though the microstructure of concrete is very complex,the cracking process and crack pattern can be obtained accurately.
文摘Improved gray-scale (IGS) quantization is a known method for re-quantizing digital gray-scale images for data compression while producing halftones by adding a level of randomness to improve visual quality of the resultant images. In this paper, first, analyzing the IGS quantizing operations reveals the capability of conserving a DC signal level of a source image through the quantization. Then, a complete procedure for producing a multi-level halftone image by IGS quantization that can achieve the DC conservation is presented. Also, the procedure uses the scanning of source pixels in an order such that geometric patterns can be prevented from occurring in the resulting halftone image. Next, the performance of the multi-level IGS halftoning is evaluated by experiments conducted on 8-bit gray-scale test images in comparison with the halftoning by error diffusion. The experimental result demonstrates that a signal level to be quantized in the IGS halftoning varies more randomly than that in the error diffusion halftoning, but not entirely randomly. Also, visual quality of the resulting halftone images was measured by subjective evaluations of viewers. The result indicates that for 3 or more-bit, in other words, 8 or more-level halftones, the IGS halftoning achieves image quality comparable to that by the error diffusion.
基金National Natural Science Foundation of China under Grant Nos.61803152,31920103016,and 11871475Doctoral Start-Up Foundation of Hunan Normal University under Grant No.0531120-3827Hunan Provincial Education Department under Grant No.HNKCSZ-2020-0813.
文摘This study aims to improve control schemes for COVID-19 by a numerical model with estimation of parameters.We established a multi-level and multi-objective nonlinear SEIDR model to simulate the virus transmission.The early spread in Japan was adopted as a case study.The first 96 days since the infection were divided into five stages with parameters estimated.Then,we analyzed the trend of the parameter value,age structure ratio,and the defined PCR test index(standardization of the scale of PCR tests).It was discovered that the self-healing rate and confirmed rate were linear with the age structure ratio and the PCR test index using the stepwise regression method.The transmission rates were related to the age structure ratio,PCR test index,and isolation efficiency.Both isolation measures and PCR test medical screening can effectively reduce the number of infected cases based on the simulation results.However,the strategy of increasing PCR test medical screening would encountered a bottleneck effect on the virus control when the index reached 0.3.The effectiveness of the policy would decrease and the basic reproduction number reached the extreme value at 0.6.This study gave a feasible combination for isolation and PCR test by simulation.The isolation intensity could be adjusted to compensate the insufficiency of PCR test to control the pandemic.
文摘This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.