Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force con...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods...This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.展开更多
The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boun...The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boundary layer is built near the ideal switch surface which can eliminate chattering in the switch surface. The proposed control method with L2 gain can guarantee exponential stability of a system state with no parameter uncertainty and exter- nal disturbance, while it can guarantee state ultimate boundness if parameter uncertainty and external disturbance exist. In the proposed design method, stability of the closed-loop system is analyzed by adopting the Lyapurtov func- tion approach. Finally the numerical simulation results show that the proposed smooth variable structure controller has good pelformance without chattering in the switch surface.展开更多
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor ...A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.展开更多
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex...We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.展开更多
In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the...In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of theboundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.展开更多
The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t...The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept...In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.展开更多
网络控制系统通过通信网络连接传感器、控制器和执行器,实现远程监控和智能控制,具有突破地域限制的优势,但其开放性和网络依赖性也引入了诸多问题。首先,系统分析了网络控制系统中存在的信号量化误差、数据包丢失、网络时延、带宽占用...网络控制系统通过通信网络连接传感器、控制器和执行器,实现远程监控和智能控制,具有突破地域限制的优势,但其开放性和网络依赖性也引入了诸多问题。首先,系统分析了网络控制系统中存在的信号量化误差、数据包丢失、网络时延、带宽占用和网络安全威胁等问题;其次,在回顾网络控制系统研究成果的基础上,提出了新的控制策略,包括新型量化控制、随机丢包控制、时变时延的自触发控制、变采样周期智能调度控制、动态事件触发控制、DoS(denial of service)攻击的网络控制等;再次,归纳了相关的控制理论方法,包括随机系统法、预测控制法、时延估算与补偿、模糊反馈法、神经网络预测法;最后,提出了网络控制系统研究在未来面临的挑战。展开更多
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金This work was supported by the National Natural Science Foundation of China
文摘This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.
文摘The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boundary layer is built near the ideal switch surface which can eliminate chattering in the switch surface. The proposed control method with L2 gain can guarantee exponential stability of a system state with no parameter uncertainty and exter- nal disturbance, while it can guarantee state ultimate boundness if parameter uncertainty and external disturbance exist. In the proposed design method, stability of the closed-loop system is analyzed by adopting the Lyapurtov func- tion approach. Finally the numerical simulation results show that the proposed smooth variable structure controller has good pelformance without chattering in the switch surface.
基金National Natural Science Foundation of China(10902003)
文摘A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.
基金supported by the National Natural Science Foundation of China(11971276,12171287)Natural Science Foundation of Shandong Province(ZR2016JL004)+1 种基金supported by the China Postdoctoral Science Foundation(2021TQ0017,2021M700244)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210019)。
文摘We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374096 and 61104048)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y6110751)
文摘In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of theboundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.
文摘The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
基金Project(08SK1002) supported by the Major Project of Science and Technology Department of Hunan Province,China
文摘In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.
文摘网络控制系统通过通信网络连接传感器、控制器和执行器,实现远程监控和智能控制,具有突破地域限制的优势,但其开放性和网络依赖性也引入了诸多问题。首先,系统分析了网络控制系统中存在的信号量化误差、数据包丢失、网络时延、带宽占用和网络安全威胁等问题;其次,在回顾网络控制系统研究成果的基础上,提出了新的控制策略,包括新型量化控制、随机丢包控制、时变时延的自触发控制、变采样周期智能调度控制、动态事件触发控制、DoS(denial of service)攻击的网络控制等;再次,归纳了相关的控制理论方法,包括随机系统法、预测控制法、时延估算与补偿、模糊反馈法、神经网络预测法;最后,提出了网络控制系统研究在未来面临的挑战。