Vertically aligned TiO2/SrTiO3 core–shell heterostructured nanowire arrays with different shell thicknesses(5–40 nm)were fabricated on fluorine-doped tin oxide substrate via a hydrothermal process.Microstructural ch...Vertically aligned TiO2/SrTiO3 core–shell heterostructured nanowire arrays with different shell thicknesses(5–40 nm)were fabricated on fluorine-doped tin oxide substrate via a hydrothermal process.Microstructural characterization demonstrated that the TiO2 nanowires were uniformly coated by the singlecrystal SrTiO3 shell,where continuous and large-area interface could be clearly observed.By this means,significantly enhanced photoelectrochemical water splitting properties(0.78 mA·cm^-2 at 1.23 V vs.RHE)were successfully realized in well-designed sample(with a shell thickness of 5–10 nm)compared with those of pristine TiO2(0.38 mA·cm^-2 at 1.23 V vs.RHE).The improvement of photoelectrochemical properties was attributed to the improved charge injection and charge separation,which are calculated by the results of water oxidation and sulfite oxidation measurements.Based on these results,a mechanism was proposed that SrTiO3 shell acted as an electron–hole separation layer to improve the photocurrent density.On the other hand,the sample with an over-thick SrTiO3 shell(20–40 nm)exhibited slightly reduced photoelectrochemical properties(0.66 mA·cm^-2),which could be explained by the increase of the recombination rate in thethicker SrTiO3 shell.This work provided a facile strategy to improve and modulate the photoelectrochemical performance of heterostructured photoanodes.展开更多
Structural control and element doping are two popular strategies to produce semiconductors with surface enhanced Raman spectroscopy(SERS)properties.For TiO2 based SERS substrates,maintaining a good crystallinity is cr...Structural control and element doping are two popular strategies to produce semiconductors with surface enhanced Raman spectroscopy(SERS)properties.For TiO2 based SERS substrates,maintaining a good crystallinity is critical to achieve excellent Raman scattering.At elevated temperatures(N600°C),the phase transition from anatase to rutile TiO2 could result in a poor SERS performance.In this work,we report the successful synthesis of TiO2 nanowhiskers with excellent SERS properties.The enhancement factor,an index of SERS performance,is 4.96×106 for methylene blue molecule detecting,with a detection sensitivity around 10-7 mol·L-1.Characterizations,such as XRD,Raman,TEM,UV–vis and Zeta potential measurement,have been performed to decrypt structural and chemical characteristics of the newly synthesized TiO2 nanowhiskers.The photo absorption onset of MB adsorbed TiO2 nanowhiskers was similar to that of bare TiO2 nanowhiskers.In addition,no new band was observed from the UV–vis of MB modified TiO2 nanowhiskers.Both results suggest that the high enhancement factor cannot be explained by the charge-transfer mechanism.With the support of ab initio density functional theory calculations,we reveal that interfacial potassium is critical to maintain thermal stability of the anatase phase up to 900°C.In addition,the deposition of potassium results in a negatively charged TiO2 nanowhisker surface,which favors specific adsorption of methylene blue molecules and significantly improves SERS performance via the electrostatic adsorption effect.展开更多
Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the con...Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.展开更多
Conventional polycrystalline LiMn_(2)O_(4)(PC-LMO)suffers from poor Li^(+)diffusion rates and structural instability,negatively affecting its electrochemical performance.Here,we design a single-crystal LMO cathode mat...Conventional polycrystalline LiMn_(2)O_(4)(PC-LMO)suffers from poor Li^(+)diffusion rates and structural instability,negatively affecting its electrochemical performance.Here,we design a single-crystal LMO cathode material using BaO flux(SC-LMOB)to address these issues.The BaO flux enables the fabrication of brick-like single-crystal particles,enhancing Li^(+)diffusion by shortening the diffusion path and increasing the unit cell volume.This process also reduces the specific surface area and stabilizes the crystal structure,effectively mitigating Mn dissolution and polarization.As a result,SC-LMOB exhibits ultra-high rate performance and superior structural stability,retaining 88.8%of its capacity at a 20 C discharge rate and achieving capacity retentions of 85.3%and 86.0%after 500 and 300 cycles at 1 C at room and elevated temperatures,respectively.This structural design offers a low-cost,scalable approach for fabricating single-crystal cathode materials with excellent performance.展开更多
TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydr...TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.展开更多
TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), s...TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE- SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. Results of electron microscopic observations indicated that the nanowires were smooth and uniform with a diameter of about 50-80 nm and several micrometers in length. SAED, Raman, and XRD mea- surements showed that TiO2 nanowires were single-crystalline with a pure rutile structure after heating at 800 ~C for 10 h. In this situation, the nanowire constituents grew preferentially along the 〈001〉 direction. Furthermore, the formation process and mechanistic study of the Ti02 nanowire arrays were proposed and discussed in detail. The nanowires are clearly produced by the deposition of TiO2 particles on the inner wall of the template nanochannels.展开更多
Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synt...Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.展开更多
Single-crystalline anatase TiO2nanorods have been prepared by solvothermal method using tetrabutylammonium hydroxide(TBAH) as a morphology controlling agent.The obtained TiO2nanorods are dominated by a large percent...Single-crystalline anatase TiO2nanorods have been prepared by solvothermal method using tetrabutylammonium hydroxide(TBAH) as a morphology controlling agent.The obtained TiO2nanorods are dominated by a large percentage of {010} facets.The power conversion efficiency of dye-sensitized solar cell(DSSC) based on anatase TiO2nanorods(8.66%) exhibits a significant improvement(35%) compared to that of P25 TiO2(5.66%).The high performance of the anatase TiO2nanorods solar cell is ascribed to their large percent of exposed {010} facets as well as balancing their surface areas and sizes.展开更多
Despite one-dimensional (1D) semiconductor nanostructure arrays attracting increasing attention due to their many advantages, highly ordered TiO2 nanorod arrays (TiO2 NR) are rarely grown in situ on Ti substrates....Despite one-dimensional (1D) semiconductor nanostructure arrays attracting increasing attention due to their many advantages, highly ordered TiO2 nanorod arrays (TiO2 NR) are rarely grown in situ on Ti substrates. Herein, a feasible method to fabricate TiO2 NRs on Ti substrates by using a through-mask anodization process is reported. Self-ordered anodic aluminum oxide (AAO) overlaid on Ti substrate was used as a nanotemplate to induce the growth of TiO2 NRs. The NR length and diameter could be controlled by adjusting anodization parameters such as electrochemical anodization voltage, anodization time and temperature, and electrolyte composition. Furthermore, according to the proposed NR formation mechanism, the anodized Ti ions migrate and deposit in the AAO nanochannels to form Ti(OH)4 or amorphous TiO2 NRs under electric field, owing to the confinement effect of the template. Photoelectrochemical tests indicated that, after hydrogenation, the TiO2 NRs presented higher photocurrent density under simulated sunlight and visible light illuminations, suggesting their potential use in photoelectrochemical water splitting, photocatalysis, solar cells, and sensors.展开更多
LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible cap...LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.展开更多
The magnetic structure of the spin-chain antiferromagnet SrCo2 V208 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature TN=4....The magnetic structure of the spin-chain antiferromagnet SrCo2 V208 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature TN=4.96 K. The moment of 2.16#B per Co at 1.6K in the screw chain running along the c axis Mternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetieally Monk the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonM crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo2 V~ 08 warrants SrCo2 V2 08 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism.展开更多
The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray...The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group P21/n, Z = 8 and Mr = 198.57. A cultivation process of the single crystal of unstable aryl azide was provided. The group of trifluoromethyl sulfinyl was found for the first time to be a new excellent leaving group of aromatic nucleophilic substitution reactions.展开更多
A convenient and scalable technique for the synthesis of rutile titanium dioxide(TiO2) nano-rods was presented by using bulk TiO2 powder, sodium hydroxide(NaOH) and distilled water as raw materials. X-ray diffraction(...A convenient and scalable technique for the synthesis of rutile titanium dioxide(TiO2) nano-rods was presented by using bulk TiO2 powder, sodium hydroxide(NaOH) and distilled water as raw materials. X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) studies indicate that the prepared sample is crystalline and free from any impurities, however, it has no distinct shape and possesses a huge degree of agglomeration, and the average crystal size is around 40 nm. After annealing the sample at 600 °C for 2 h, it is observed through FESEM that nano-rods are formed. And XRD analysis shows that the nano-rods are single crystalline with distinct and smooth surfaces in different sizes with average length of about 1 μm and diameter of about 80 nm. Further UV-visible spectroscopy and Raman studies were conducted for the prepared sample and the band gap of the final product is found to be 3.40 eV.展开更多
TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of Ti...TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of TiO 2 . According to microstructural observations, the nanowires have two typical morphologies, a long straight type and a short tortuous type. The straight nanowires were obtained at a wide temperature range of 900–1050 ℃, while the tortuous ones were formed below 900 ℃. Transmission electron microscopy characterization revealed that both the straight and the tortuous nanowires are single-crystal rutile TiO 2 . The preferential growth direction of the nanowires was determined as [110] orientation according to electron diffraction and high-resolution image analyses. The morphological change of TiO 2 nanowires was discussed by considering the different atomic diffusion rates of Ti atoms caused by the phase transformation in Ti substrate at around 900 ℃.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51232006, 51472218 and 11474249)the National Basic Research Program of China (No. 2015CB654900)
文摘Vertically aligned TiO2/SrTiO3 core–shell heterostructured nanowire arrays with different shell thicknesses(5–40 nm)were fabricated on fluorine-doped tin oxide substrate via a hydrothermal process.Microstructural characterization demonstrated that the TiO2 nanowires were uniformly coated by the singlecrystal SrTiO3 shell,where continuous and large-area interface could be clearly observed.By this means,significantly enhanced photoelectrochemical water splitting properties(0.78 mA·cm^-2 at 1.23 V vs.RHE)were successfully realized in well-designed sample(with a shell thickness of 5–10 nm)compared with those of pristine TiO2(0.38 mA·cm^-2 at 1.23 V vs.RHE).The improvement of photoelectrochemical properties was attributed to the improved charge injection and charge separation,which are calculated by the results of water oxidation and sulfite oxidation measurements.Based on these results,a mechanism was proposed that SrTiO3 shell acted as an electron–hole separation layer to improve the photocurrent density.On the other hand,the sample with an over-thick SrTiO3 shell(20–40 nm)exhibited slightly reduced photoelectrochemical properties(0.66 mA·cm^-2),which could be explained by the increase of the recombination rate in thethicker SrTiO3 shell.This work provided a facile strategy to improve and modulate the photoelectrochemical performance of heterostructured photoanodes.
基金supported by National Natural Science Foundation of China(21878143,21476106,and 21838004)Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601)+3 种基金the fund of State Key Laboratory of MaterialsOriented Chemical Engineering(ZK201702,KL16-01)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the U.S.National Science Foundation(NSF)for support through Grant No.CHE-1710102the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources。
文摘Structural control and element doping are two popular strategies to produce semiconductors with surface enhanced Raman spectroscopy(SERS)properties.For TiO2 based SERS substrates,maintaining a good crystallinity is critical to achieve excellent Raman scattering.At elevated temperatures(N600°C),the phase transition from anatase to rutile TiO2 could result in a poor SERS performance.In this work,we report the successful synthesis of TiO2 nanowhiskers with excellent SERS properties.The enhancement factor,an index of SERS performance,is 4.96×106 for methylene blue molecule detecting,with a detection sensitivity around 10-7 mol·L-1.Characterizations,such as XRD,Raman,TEM,UV–vis and Zeta potential measurement,have been performed to decrypt structural and chemical characteristics of the newly synthesized TiO2 nanowhiskers.The photo absorption onset of MB adsorbed TiO2 nanowhiskers was similar to that of bare TiO2 nanowhiskers.In addition,no new band was observed from the UV–vis of MB modified TiO2 nanowhiskers.Both results suggest that the high enhancement factor cannot be explained by the charge-transfer mechanism.With the support of ab initio density functional theory calculations,we reveal that interfacial potassium is critical to maintain thermal stability of the anatase phase up to 900°C.In addition,the deposition of potassium results in a negatively charged TiO2 nanowhisker surface,which favors specific adsorption of methylene blue molecules and significantly improves SERS performance via the electrostatic adsorption effect.
基金Project supported by the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University(Grant No.LZUMMM2012003)the Open Project of Key Laboratory of Beam Technology and Material Modification of Ministry of Education,Beijing Normal University(Grant No.201204)the Open Project of State Key Laboratory of Crystal Material,Shandong University,China(Grant No.KF1311)
文摘Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.
基金supported by National Key Research and Development Program of China(No.2021YFB3502000)the National Natural Science Foundation of China(Nos.22309207,52325405,U21A20284,52261135632,51874358 and 51772333)。
文摘Conventional polycrystalline LiMn_(2)O_(4)(PC-LMO)suffers from poor Li^(+)diffusion rates and structural instability,negatively affecting its electrochemical performance.Here,we design a single-crystal LMO cathode material using BaO flux(SC-LMOB)to address these issues.The BaO flux enables the fabrication of brick-like single-crystal particles,enhancing Li^(+)diffusion by shortening the diffusion path and increasing the unit cell volume.This process also reduces the specific surface area and stabilizes the crystal structure,effectively mitigating Mn dissolution and polarization.As a result,SC-LMOB exhibits ultra-high rate performance and superior structural stability,retaining 88.8%of its capacity at a 20 C discharge rate and achieving capacity retentions of 85.3%and 86.0%after 500 and 300 cycles at 1 C at room and elevated temperatures,respectively.This structural design offers a low-cost,scalable approach for fabricating single-crystal cathode materials with excellent performance.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2013XK07)
文摘TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.
基金supported by the Institute of Science and High Technology and Environmental Sciences(No.1/1859)
文摘TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE- SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. Results of electron microscopic observations indicated that the nanowires were smooth and uniform with a diameter of about 50-80 nm and several micrometers in length. SAED, Raman, and XRD mea- surements showed that TiO2 nanowires were single-crystalline with a pure rutile structure after heating at 800 ~C for 10 h. In this situation, the nanowire constituents grew preferentially along the 〈001〉 direction. Furthermore, the formation process and mechanistic study of the Ti02 nanowire arrays were proposed and discussed in detail. The nanowires are clearly produced by the deposition of TiO2 particles on the inner wall of the template nanochannels.
文摘Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.
基金the financial support of the project from the National Natural Science Foundation of China(No.51202139)the Specialized Research Fund for the Doctoral Program of Higher education(No.20123108120022)+2 种基金the Natural Science Foundation of Shanghai(Nos. 12ZR1443900 and 14ZR1416400)the Special Research Foundation for Training and Selecting Outstanding Young Teachers of Universities in Shanghai(No.ZZSD12041)the Innovation Foundation of Shanghai University
文摘Single-crystalline anatase TiO2nanorods have been prepared by solvothermal method using tetrabutylammonium hydroxide(TBAH) as a morphology controlling agent.The obtained TiO2nanorods are dominated by a large percentage of {010} facets.The power conversion efficiency of dye-sensitized solar cell(DSSC) based on anatase TiO2nanorods(8.66%) exhibits a significant improvement(35%) compared to that of P25 TiO2(5.66%).The high performance of the anatase TiO2nanorods solar cell is ascribed to their large percent of exposed {010} facets as well as balancing their surface areas and sizes.
基金Thanks for the financial support of the National Natural Science Foundation of China (Nos. 21303227, 21573259, and 51403220), Qingdao science and tech- nology plan application foundation research project(No. 14-2-4-60-JCH) and the "Hundred Talents Pro- gram" of Chinese Academy of Sciences (D. A. W.).
文摘Despite one-dimensional (1D) semiconductor nanostructure arrays attracting increasing attention due to their many advantages, highly ordered TiO2 nanorod arrays (TiO2 NR) are rarely grown in situ on Ti substrates. Herein, a feasible method to fabricate TiO2 NRs on Ti substrates by using a through-mask anodization process is reported. Self-ordered anodic aluminum oxide (AAO) overlaid on Ti substrate was used as a nanotemplate to induce the growth of TiO2 NRs. The NR length and diameter could be controlled by adjusting anodization parameters such as electrochemical anodization voltage, anodization time and temperature, and electrolyte composition. Furthermore, according to the proposed NR formation mechanism, the anodized Ti ions migrate and deposit in the AAO nanochannels to form Ti(OH)4 or amorphous TiO2 NRs under electric field, owing to the confinement effect of the template. Photoelectrochemical tests indicated that, after hydrogenation, the TiO2 NRs presented higher photocurrent density under simulated sunlight and visible light illuminations, suggesting their potential use in photoelectrochemical water splitting, photocatalysis, solar cells, and sensors.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(52070194,51902347,51908555,and 51822812)Natural Science Foundation of Hunan Province(2020JJ5741)the Graduate Innovation Project of Central South University(2020zzts093).
文摘LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921700 and 2011CBA00112the National Natural Science Foundation of China under Grant Nos 11034012 and 11190024
文摘The magnetic structure of the spin-chain antiferromagnet SrCo2 V208 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature TN=4.96 K. The moment of 2.16#B per Co at 1.6K in the screw chain running along the c axis Mternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetieally Monk the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonM crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo2 V~ 08 warrants SrCo2 V2 08 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism.
文摘The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group P21/n, Z = 8 and Mr = 198.57. A cultivation process of the single crystal of unstable aryl azide was provided. The group of trifluoromethyl sulfinyl was found for the first time to be a new excellent leaving group of aromatic nucleophilic substitution reactions.
基金supported by the MKE (The Ministry of Knowledge Economy)Korea Under the ITRC (Information Technology Research Centre) support program supervised by the NIPA (National IT industry Promotion Agency) (NIPA-2012-H0301-12-2009)+1 种基金supported by the Ministry of Education, Science and Technology (MEST)National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2012H1B8A2026212)
文摘A convenient and scalable technique for the synthesis of rutile titanium dioxide(TiO2) nano-rods was presented by using bulk TiO2 powder, sodium hydroxide(NaOH) and distilled water as raw materials. X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) studies indicate that the prepared sample is crystalline and free from any impurities, however, it has no distinct shape and possesses a huge degree of agglomeration, and the average crystal size is around 40 nm. After annealing the sample at 600 °C for 2 h, it is observed through FESEM that nano-rods are formed. And XRD analysis shows that the nano-rods are single crystalline with distinct and smooth surfaces in different sizes with average length of about 1 μm and diameter of about 80 nm. Further UV-visible spectroscopy and Raman studies were conducted for the prepared sample and the band gap of the final product is found to be 3.40 eV.
基金supported by the Hundred Talents Program of the Chinese Academy of Sciences,Shenyang Science and Technology Project (Grant No.F11-264-1-65)the National Basic Research Program of China (Grant No. 2010CB631006)the Major National Science and Technology Program of China (GrantNo. 2011ZX02602)
文摘TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of TiO 2 . According to microstructural observations, the nanowires have two typical morphologies, a long straight type and a short tortuous type. The straight nanowires were obtained at a wide temperature range of 900–1050 ℃, while the tortuous ones were formed below 900 ℃. Transmission electron microscopy characterization revealed that both the straight and the tortuous nanowires are single-crystal rutile TiO 2 . The preferential growth direction of the nanowires was determined as [110] orientation according to electron diffraction and high-resolution image analyses. The morphological change of TiO 2 nanowires was discussed by considering the different atomic diffusion rates of Ti atoms caused by the phase transformation in Ti substrate at around 900 ℃.