期刊文献+
共找到577篇文章
< 1 2 29 >
每页显示 20 50 100
Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature 被引量:2
1
作者 Shenfei Zhao Xiaoshuai Wu +5 位作者 Jiliang Zhang Chunjie Li Zixiang Cui Weihua Hu Ruguang Ma Changming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期325-335,I0008,共12页
Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activat... Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activation energy at the sulfur cathode pose great challenges for the practical applications.Herein,biomass-derived carbon with single-atomic cobalt sites(MMPC-Co)is synthesized as the cathode in Zn-S batteries.The catalysis of single-atom Co sites greatly promotes the transform of cathode electrolyte interface(CEI)on the cathode surface,while offering accelerated charge transfer rate for high conversion reversibility and large electrochemical surface area(ECSA)for high electrocatalytic current.Furthermore,the rich pore structure not only physically limits sulfur loss,but also accelerates the transport of zinc ions.In addition,the large pore volume of MMPC-Co is able to relieve the stress effect caused by the volume expansion of Zn S during charge/discharge cycles,thereby maintaining the stability of electrode structure.Consequently,the sulfur cathode maintains a high specific capacity of 729.96 m A h g^(-1)after 500 cycles at4 A g^(-1),which is much better than most cathode materials reported in the literature.This work provides new insights into the design and development of room-temperature aqueous Zn-S batteries. 展开更多
关键词 Biomass-derived carbon single-atom catalysts Rich pore structure Sulfur cathode Aqueous zinc-sulfur batteries
在线阅读 下载PDF
Insight into demand-driven preparation of single-atomic mediators for lithium–sulfur batteries
2
作者 Miaoyu Lu Yifan Ding +3 位作者 Zaikun Xue Ziang Chen Yuhan Zou Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期205-219,I0007,共16页
Lithium-sulfur(Li-S) batteries have attracted considerable attention as one of the most appealing energy storage systems.Strenuous efforts have been devoted to tackling the tremendous challenges,mainly pertaining to t... Lithium-sulfur(Li-S) batteries have attracted considerable attention as one of the most appealing energy storage systems.Strenuous efforts have been devoted to tackling the tremendous challenges,mainly pertaining to the severe shuttle effect,sluggish redox kinetics and lithium dendritic growth.Single-atomic mediators as promising candidates exhibit impressive performance in addressing these intractable issues.Related research often utilizes a trial-and-error approach,proposing solutions to fabricate single-atomic materials with diversified features.However,comprehensive review articles especially targeting demand-driven preparation are still in a nascent stage.Inspired by these considerations,this review summarizes the design of single-atomic mediators based on the application case-studies in LiS batteries and other metal-sulfur systems.Emerging preparation routes represented by chemical vapor deposition technology are introduced in a demand-oriented classification.Finally,future research directions are proposed to foster the advancement of single-atomic mediators in Li-S realm. 展开更多
关键词 single-atom catalyst Lithium–sulfur battery Chemical vapor deposition Demand-driven preparation
在线阅读 下载PDF
Single-atomic tungsten-doped Co_(3)O_(4) nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries 被引量:5
3
作者 Sangni Wang Riming Hu +11 位作者 Ding Yuan Lei Zhang Chao Wu Tianyi Ma Wei Yan Rui Wang Liang Liu Xuchuan Jiang Hua Kun Liu Shi Xue Dou Yuhai Dou Jiantie Xu 《Carbon Energy》 SCIE CSCD 2023年第8期31-41,共11页
The practical application of lithium–sulfur batteries(LSBs)is severely hindered by the undesirable shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics of sulfur species.Herein,a series of ultrathin si... The practical application of lithium–sulfur batteries(LSBs)is severely hindered by the undesirable shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics of sulfur species.Herein,a series of ultrathin singleatomic tungsten-doped Co_(3)O_(4)(Wx-Co_(3)O_(4))nanosheets as catalytic additives in the sulfur cathode for LSBs are rationally designed and synthesized.Benefiting from the enhanced catalytic activity and optimized electronic structure by W doping,the Wx-Co_(3)O_(4) not only reduces the shuttling of LiPSs but also decreases the energy barrier of sulfur redox reactions of sulfur species,leading to accelerated electrode kinetic.As a result,LSB cathodes with the use of 5.0 wt%W0.02-Co_(3)O_(4) as the electrocatalyst show the high reversible capacities of 1217.0 and 558.6 mAh g^(-1) at 0.2 and 5.0 C,respectively,and maintain a high reversible capacity of 644.6 mAh g^(-1) at 1.0 C(1.0 C=1675 mA g^(-1))after 500 cycles.With a high sulfur loading of 5.5 mg cm^(-2) and electrolyte–electrode ratio of 8μL_(electrolyte) mg_(sulfur)^(-1),the 5.0 wt%W_(0.02)-Co_(3)O_(4)-based sulfur cathode also retains a high reversible areal capacity of 3.86 mAh cm^(-2) at 0.1 C after 50 cycles with an initial capacity retention of 84.7%. 展开更多
关键词 catalytic additives lithium-sulfur batteries single-atomic dopant sluggish redox kinetics
在线阅读 下载PDF
Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells 被引量:2
4
作者 Zhaoyuan Lyu Shichao Ding +6 位作者 Maoyu Wang Xiaoqing Pan Zhenxing Feng Hangyu Tian Chengzhou Zhu Dan Du Yuehe Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期364-376,共13页
Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-at... Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’performance.In this work,we use a facile ion-imprinting method(IIM)to synthesize isolated Fe-N-C single-atomic site catalysts(IIM-Fe-SASC).With this method,the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites.The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references.Due to its excellent properties,IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide(H_(2)O_(2)).Using IIM-Fe-SASC as the nanoprobe,in situ detection of H_(2)O_(2)generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity.This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H_(2)O_(2)detection. 展开更多
关键词 single-atomic site catalysts NANOPROBE Peroxidase-like activities BIOSENSING Living cell
在线阅读 下载PDF
Electrochemical removal of ammonium nitrogen in high efficiency and N_(2) selectivity using non-noble single-atomic iron catalyst 被引量:2
5
作者 Fengjiao Quan Guangming Zhan +6 位作者 Bing Zhou Cancan Ling Xiaobing Wang Wenjuan Shen Jianfen Li Falong Jia Lizhi Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期544-552,共9页
Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of preciou... Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater. 展开更多
关键词 Ammonia nitrogen removal single-atom iron Non-noble metal catalyst Aquaculture wastewater
原文传递
Bandgap engineering of tetragonal phase CuFeS_(2)quantum dots via mixed-valence single-atomic Ag decoration for synergistic Cr(VI)reduction and RhB degradation 被引量:1
6
作者 Yangzi Shangguan Yuanhao Zhou +8 位作者 Renji Zheng Xuezhen Feng Qiuyue Ge Ranhao Wang Dazhong Yang Wenfei Wei Xiaoyong Wu Jia Lin Hong Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3450-3456,共7页
Bandgap engineering through single-atom site binding on semiconducting photocatalyst can boost the intrinsic activity,selectivity,carrier separation,and electron transport.Here,we report a mixed-valence Ag(0)and Ag(I)... Bandgap engineering through single-atom site binding on semiconducting photocatalyst can boost the intrinsic activity,selectivity,carrier separation,and electron transport.Here,we report a mixed-valence Ag(0)and Ag(I)single atoms co-decorated semiconducting chalcopyrite quantum dots(Ag/CuFeS_(2)QDs)photocatalyst.It demonstrates efficient photocatalytic performances for specific organic dye(rhodamine B,denoted as RhB)as well as inorganic dye(Cr(VI))removal in water under natural sunlight irradiation.The RhB degradation and Cr(VI)removal efficiencies by Ag/CuFeS_(2)QDs were 3.55 and 6.75 times higher than those of the naked CuFeS_(2)QDs at their optimal pH conditions,respectively.Besides,in a mixture of RhB and Cr(VI)solution under neutral condition,the removal ratio has been elevated from 30.2%to 79.4%for Cr(VI),and from 95.2%to 97.3%for RhB degradation by using Ag/CuFeS_(2)QDs after 2 h sunlight illumination.The intrinsic mechanism for the photocatalytic performance improvement is attributed to the narrow bandgap of the single-atomic Ag(I)anchored CuFeS_(2)QDs,which engineers the electronic structure as well as expands the optical light response range.Significantly,the highly active Ag(0)/CuFeS_(2)and Ag(I)/CuFeS_(2)effectively improve the separation efficiency of the carriers,thus enhancing the photocatalytic performances.This work presents a highly efficient single atom/QDs photocatalyst,constructed through bandgap engineering via mixed-valence single noble metal atoms binding on semiconducting QDs.It paves the way for developing high-efficiency single-atom photocatalysts for complex pollutions removal in dyeing wastewater environment. 展开更多
关键词 single-atom catalysts Bandgap engineering Cr(VI)reduction Organic pollutants degradation Dyeing wastewater treatment
原文传递
Engineering Single-Atomic Ru Sites on Cobalt Hydroxide Boosts Atomic Hydrogen Generation for Efficient Nitrate Electroreduction to Ammonia
7
作者 Jingfang Zhang Yue Liu +3 位作者 Junchi Zhang Jiacheng Guan Hui Ke Yi Huang 《Renewables》 2025年第2期99-110,共12页
Electrocatalytic nitrate reduction reaction(NO_(3)RR)to ammonia provides a promising approach to environmental preservation and sustainable energy production,but suffers from a low yield rate and poor Faradic efficien... Electrocatalytic nitrate reduction reaction(NO_(3)RR)to ammonia provides a promising approach to environmental preservation and sustainable energy production,but suffers from a low yield rate and poor Faradic efficiency,ascribed to the sluggish active hydrogen(H^(*))generation via water dissociation.Herein,single Ru atoms anchored Co(OH)_(2)(Ru1/Co(OH)_(2))catalysts are synthesized for selective nitrate reduction to ammonia,which exhibits an excellent NH_(3)yield rate of 4200μg h^(-1)cm^(-2)and a high NH_(3)Faradic efficiency of 97%at-0.33 V versus reversible hydrogen electrode,outperforming the counterpart Co(OH)_(2)and the mostly reported electrocatalysts.Experimental and theoretical results reveal that the addition of Ru atoms can boost H^(*)generation and decrease the hydrogenation energy barrier on Ru1/Co(OH)_(2),leading to enhanced NO_(3)RR performance.An integrated system of electrochemical NO_(3)RR electrolyzer and in-situ NH_(3)recovery is present,where the electrochemical NO_(3)RR can be coupled with a hydrazine oxidation reaction to achieve a more highly efficient and electricity-saving system for NH_(3)recovery.This work provides guidance for the rational design of high-performance NO_(3)RR electrocatalysts by the effective regulation of H^(*)generation and holds great promise for simultaneous nitrate-containing wastewater treatment and resource recovery. 展开更多
关键词 single-atomic site cobalt hydroxide atomic hydrogen nitrate reduction reaction NH_(3)recovery
原文传递
Graphene-Based Phthalocyanine-Assembled Synergistic Fe-Co-Ni Trimetallic Single-Atomic Bifunctional Electrocatalysts by Rational Design for Boosting Oxygen Reduction/Evolution Reactions
8
作者 Yujun Wu Shaobing Tang +7 位作者 Wenbo Shi Zhaoyu Ning Xingke Du Cunling Ye Zhengyu Bai Wei Shuang Qing Zhang Lin Yang 《Carbon Energy》 2025年第9期114-126,共13页
Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains... Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs. 展开更多
关键词 bifunctional electrocatalysts Fe-Co-Ni trimetallic single-atomic sites oxygen evolution reaction oxygen reduction reaction synergetic coupling effect
在线阅读 下载PDF
Nickel-iron in the second coordination shell boost single-atomicsite iridium catalysts for high-performance urea electrooxidation
9
作者 Xiaoyu Chen Jiawei Wan +6 位作者 Jing Chai Liang Zhang Fang Zhang Qinghua Zhang Lin Gu Lirong Zheng Ranbo Yu 《Nano Research》 SCIE EI CSCD 2024年第5期3919-3926,共8页
Single-atom catalysts(SACs)with high catalytic activity as well as great stability are demonstrating great promotion in electrocatalytic energy conversion,which is also a big challenge to achieve.Herein,we proposed a ... Single-atom catalysts(SACs)with high catalytic activity as well as great stability are demonstrating great promotion in electrocatalytic energy conversion,which is also a big challenge to achieve.Herein,we proposed a facile synthetic strategy to construct nickel-iron bimetallic hydroxide nanoribbon stabilized single-atom iridium catalysts(Ir-NiFe-OH),where the nickel-iron hydroxide nanoribbon not only can serve as good electronic conductor,but also can well stabilize and fully expose single-atom sites.Adopted as catalyst for urea oxidation reaction(UOR),it exhibited excellent UOR performance that it only needed a low operated potential of 1.38 V to achieve the current density of 100 mA·cm^(-2).In-situ Fourier transform infrared spectroscopy,X-ray absorption spectrum,and density functional theory calculations proved that Ir species are active centers and the existence of both Ni and Fe in the local structure of Ir atom can optimize the d-band center of Ir species,promoting the adsorption of intermediates and desorption of products for UOR.The hydrogen evolution reaction(HER)/UOR electrocatalytic cell demanded voltages of 1.46 and 1.50 V to achieve 50 and 100 mA·cm^(-2),respectively,which demonstrated a higher activity and better stability than those of conventional catalysts.This work opens a new avenue to develop catalysts for UORs with boosted activity and stability. 展开更多
关键词 single-atom IRIDIUM coordinate structure NANORIBBON urea electrooxidation
原文传递
Single-atomic activation on ZnIn_(2)S_(4)basal planes boosts photocatalytic hydrogen evolution
10
作者 Jianpeng Cui Ying Wang +4 位作者 Luxue Lin Xiaotian Yang Xuyu Luo Shiying Guo Xiaoyong Xu 《Nano Research》 SCIE EI CSCD 2024年第7期5949-5955,共7页
The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis,where the precise construction of stable and efficient single-atom configuration is essential but remains challenging.Here... The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis,where the precise construction of stable and efficient single-atom configuration is essential but remains challenging.Here,we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn_(2)S_(4)(Mo-ZIS)nanosheets as a highly active photocatalytic hydrogen evolution(PHE)photocatalyst.The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution,which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H*on S atoms at basal planes.As a result,Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g^(−1)·h^(−1),over 10 times that of the pristine ZIS,with an apparent quantum efficiency(AQE)up to 38.8%at 420 nm.This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration,providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification. 展开更多
关键词 photocatalytic hydrogen evolution ZnIn_(2)S_(4) single-atom activation Gibbs free energy
原文传递
Strong electronic metal-support interactions for enhanced hydroformylation activity and stability over Rh single-atom catalysts through phosphorus doping
11
作者 Boyang Fu Ping Ma +11 位作者 Xiaoyang Ding Kaifu Cai Limin Sun Yujin Zhu Qiwei Yin Yihao Sun Tianle Liu Yuzhen Li Yuxing Xu Jian Gu Haowen Ma Junling Lu 《中国科学技术大学学报》 北大核心 2025年第3期2-10,1,I0001,共11页
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d... By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability. 展开更多
关键词 heterogeneous hydroformylation Rh single-atom catalysts electronic metal-support interactions phosphorus doping
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
12
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Unusual roles of ceria as the support of a single-atom catalyst in hydroisomerization of n-heptane:Phase boundary acts as transport channels between different active centers
13
作者 Hao Qin Hui Wan Guofeng Guan 《Journal of Rare Earths》 2025年第2期276-283,I0002,共9页
Hydroisomerization of n-alkanes plays an important role in fuel and lubricants processing.Bifunctional catalysts with ultralow platinum loading have recently been reported successively for hydroisomerisation.Herein,th... Hydroisomerization of n-alkanes plays an important role in fuel and lubricants processing.Bifunctional catalysts with ultralow platinum loading have recently been reported successively for hydroisomerisation.Herein,the catalysts were prepared successfully with different methods to improve the catalytic performance.The conversion of 0.01%Pt1@CeOx/SAPO-11 prepared by co-calcination method(0.01%Pt1@CS-c)is 71.4%,25%higher than the other prepared by precipitation method.The turnover frequency per active surface platinum site(TOFPt)of 0.01%Ptl@CS-c is as high as 13115 h^(-1).Revealed by the X-ray photoelectron spectroscopy(XPS)results,the quality of phase boundary/intersurface between ceria and zeolite is found significantly different.The conjunction quality of phase boundary directly affects the spillover rate of intermediate species,which further leads to an apparent activity difference.In addition,the possible role of ceria in the reaction is discussed,rather than just as a carrier for the active metal atoms. 展开更多
关键词 Rare earths HYDROISOMERIZATION SPILLOVER Proximity single-atom catalysis Intermediate
原文传递
Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation
14
作者 Meng Liu Caixia Miao +8 位作者 Yumeng Fo Wenxuan Wang Yao Ning Shengqi Chu Weiyu Song Ying Zhang Jian Liu Zhijie Wu Wenhao Luo 《Chinese Journal of Catalysis》 2025年第4期308-318,共11页
Precisely tailoring metal single-atoms within zeolite scaffolds and understanding the origin of the unique behavior of such atomically dispersed catalysts are pivotal and challenge in chemistry and catalysis.Herein,we... Precisely tailoring metal single-atoms within zeolite scaffolds and understanding the origin of the unique behavior of such atomically dispersed catalysts are pivotal and challenge in chemistry and catalysis.Herein,we have successfully fabricated Ni single-atoms within BEA zeolite(Ni_(1)@Beta)through a facile in situ two-step hydrothermal strategy,notably without using any chelating agent for stabilizing Ni species.With the aid of advanced characterization techniques,such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy,etc.,and combined with density functional theory calculations,the nature and micro-environment of isolated Ni species,which are incorporated within 6-membered rings and stabilized by four skeletal oxygens of Beta zeolite,have been identified.The as-obtained Ni1@Beta exhibits a superior performance in terms of activity(with a turnover frequency value up to 114.1 h^(-1))and stability(for 5 consecutive runs)in the selective hydrogenation of furfural,surpassing those of Ni nanoparticle analogues and previously reported Ni-based heterogeneous catalysts.This study provides an efficient strategy for the fabrication of non-noble metal single-atoms within zeolites,which could be of great help for the design of metal-zeolite combinations in the chemoselective reactions involved in biomass conversion and beyond. 展开更多
关键词 NICKEL single-atoms Zeolites Catalytic hydrogenation Biomass conversion
在线阅读 下载PDF
Sustainable co-production of H_(2) and lactic acid from lignocellulose photoreforming using Pt-C_(3)N_(4) single-atom catalyst
15
作者 Eryu Wang Yi-Chun Chu +5 位作者 Wenjun Zhang Yanping Wei Chuanling Si Regina Palkovits Xin-Ping Wu Zupeng Chen 《Chinese Journal of Catalysis》 2025年第7期308-318,共11页
The co-production of hydrogen and value-added biochemicals from lignocellulose utilizing solar energy has been regarded as one of the technologies most potentially able to alleviate the current energy crisis.Here,we d... The co-production of hydrogen and value-added biochemicals from lignocellulose utilizing solar energy has been regarded as one of the technologies most potentially able to alleviate the current energy crisis.Here,we demonstrate a cost-effective photoreforming strategy for lignocellulose valorization using a carbon nitride-supported platinum single-atom photocatalyst.An advanced H_(2) evolution rate of 6.34 mmol molPt^(-1) h^(-1) is achieved over the optimal catalyst,which is around 4.6 and 30.5 times higher compared with the nanosized Pt counterpart and pristine carbon nitride,respectively.Meanwhile,the monosaccharides are oxidized to value-added lactic acid with>99%conversion and extraordinary selectivity up to 97%.The theoretical calculations show that with Pt incorporation,the photogenerated holes are predominantly localized on the metal sites while the photogenerated electrons are concentrated on C_(3)N_(4),thus enhancing the effective separation of charge carriers.This work provides a promising avenue for the simultaneous production of green H2 and bio-based chemicals by biomass photorefinery. 展开更多
关键词 Carbon nitride single-atom catalyst Lignocellulose photorefinery Hydrogen BIOCHEMICAL
在线阅读 下载PDF
Unsaturated cobalt single-atoms stabilized by silanol nests of zeolites for efficient propane dehydrogenation
16
作者 Liwen Guo Dao Shi +4 位作者 Tianjun Zhang Yanhang Ma Guodong Qi Jun Xu Qiming Sun 《Chinese Journal of Catalysis》 2025年第5期323-333,共11页
Propane dehydrogenation(PDH)has emerged as a key on-purpose technology for the production of propylene,but it often depends on toxic chromium and expensive platinum catalysts,highlighting the need for environmentally ... Propane dehydrogenation(PDH)has emerged as a key on-purpose technology for the production of propylene,but it often depends on toxic chromium and expensive platinum catalysts,highlighting the need for environmentally friendly and cost-effective alternatives.In this study,we developed a facile impregnation method to fabricate unsaturated Co single-atoms with a tricoordinated Co_(1)O_(3)H_(x) structure by regulating silanol nests in purely siliceous Beta zeolites.Detailed PDH catalytic tests and characterizations revealed a positive correlation between the presence of silanol nests and enhanced catalytic activity.Additionally,the unsaturated Co single-atoms exhibited a carbon deposition rate more than an order of magnitude slower than that of Co nanoparticles.Notably,the optimized Co_(0.3%)/deAl-meso-Beta catalyst achieved a record-high propylene formation rate of 21.2 mmol_(C3H6) g_(cat)^(-1) h^(-1),with an exceptional propylene selectivity of 99.1%at 550℃.Moreover,the Co_(0.3%)/deAl-meso-Beta catalyst demonstrated excellent stability,with negligible deactivation after 5 consecutive regeneration cycles.This study emphasizes the pivotal role of silanol nests of zeolites in stabilizing and modulating the coordination environment of metallic active sites,providing valuable insights for the design of high-activity,high-stability,and low-cost PDH catalysts. 展开更多
关键词 Propane dehydrogenation Unsaturated cobalt single-atoms Silanol nest Zeolite
在线阅读 下载PDF
Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications
17
作者 Hanghang Zhao Wenbo Qi +3 位作者 Xin Tan Xing Xu Fengmin Song Xianzhao Shao 《Chinese Chemical Letters》 2025年第6期164-171,共8页
Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stab... Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications. 展开更多
关键词 Advanced oxidation processes single-atom catalysts Silicon Fenton-like reaction DEGRADATION
原文传递
Exploring Single-Atom Nanozymes Toward Environmental Pollutants:Monitoring and Control
18
作者 Guojian Wu Si Li +9 位作者 Linpin Luo Yuechun Li Wentao Zhang Heng Wang Sha Liu Chenxing Du Jianlong Wang Jie Cheng Yongning Wu Yizhong Shen 《Nano-Micro Letters》 2025年第10期259-291,共33页
As environmental pollutants pose a serious threat to socioeconomic and environmental health,the development of simple,efficient,accurate and costeffective methods for pollution monitoring and control remains a major c... As environmental pollutants pose a serious threat to socioeconomic and environmental health,the development of simple,efficient,accurate and costeffective methods for pollution monitoring and control remains a major challenge,but it is an unavoidable issue.In the past decade,the artificial nanozymes have been widely used for environmental pollutant monitoring and control,because of their low cost,high stability,easy mass production,etc.However,the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface,complex composition,low catalytic activity,etc.In contrast,the emerging single-atom nanozymes(SANs)have attracted much attention in the field of environmental monitoring and control,due to their multiple advantages of atomically dispersed active sites,high atom utilization efficiency,tunable coordination environment,etc.To date,the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants.Building on the recent advances in the field,this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants.Finally,we critically evaluate the limitations and challenges of SANs,and provide the insights into their future prospects for the monitoring and control of environmental pollutants. 展开更多
关键词 single-atom nanozyme Environmental health Environmental pollutant MONITORING CONTROL
在线阅读 下载PDF
Topology-based machine learning for predicting curvature effects in metal-nitrogen-carbon single-atom catalysts
19
作者 Ge-Hao Liang Heng-Su Liu +2 位作者 Xi-Ming Zhang Jian-Feng Li Shisheng Zheng 《Journal of Energy Chemistry》 2025年第6期608-616,I0014,共10页
Metal-nitrogen-carbon(M-N-C)single-atom catalysts are widely utilized in various energy-related catalytic processes,offering a highly efficient and cost-effective catalytic system with significant potential.Recently,c... Metal-nitrogen-carbon(M-N-C)single-atom catalysts are widely utilized in various energy-related catalytic processes,offering a highly efficient and cost-effective catalytic system with significant potential.Recently,curvature-induced strain has been extensively demonstrated as a powerful tool for modulating the catalytic performance of M-N-C catalysts.However,identifying optimal strain patterns using density functional theory(DFT)is computationally intractable due to the high-dimensional search space.Here,we developed a graph neural network(GNN)integrated with an advanced topological data analysis tool-persistent homology-to predict the adsorption energy response of adsorbate under proposed curvature patterns,using nitric oxide electroreduction(NORR)as an example.Our machine learning model achieves high accuracy in predicting the adsorption energy response to curvature,with a mean absolute error(MAE)of 0.126 eV.Furthermore,we elucidate general trends in curvature-modulated adsorption energies of intermediates across various metals and coordination environments.We recommend several promising catalysts for NORR that exhibit significant potential for performance optimization via curvature modulation.This methodology can be readily extended to describe other non-bonded interactions,such as lattice strain and surface stress,providing a versatile approach for advanced catalyst design. 展开更多
关键词 Curvature effect Persistent homology Machine learning single-atom catalyst Nitricoxide electroreduction
在线阅读 下载PDF
Densely populated single-atom catalysts for boosting hydrogen generation from formic acid
20
作者 Xiaogeng Zhao Junmin Wang +6 位作者 Dongnuan Zhang Yunhui Hao Xingmian Zhang Junna Feng Hong Su Cheng Feng Chun Wang 《Carbon Energy》 2025年第1期64-75,共12页
The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coup... The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coupled with hightemperature calcination conditions,limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts.Herein,we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor,effectively preventing the formation of metal nanoparticles even with up to 6.377%cobalt loading.This catalyst showed a high H_(2) production rate of 778mLgcat^(−1) h^(−1) when used in the dehydrogenation reaction of formic acid.In addition to the high density of the active site,a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst. 展开更多
关键词 COBALT DEHYDROGENATION formic acid polyfurfuryl alcohol single-atom catalyst
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部