期刊文献+
共找到40,287篇文章
< 1 2 250 >
每页显示 20 50 100
Advanced Design for High-Performance and AI Chips
1
作者 Ying Cao Yuejiao Chen +2 位作者 Xi Fan Hong Fu Bingang Xu 《Nano-Micro Letters》 2026年第1期306-336,共31页
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ... Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward. 展开更多
关键词 Artificial intelligence Advanced chips AI chips Design tactics Review and perspective
在线阅读 下载PDF
Intelligent integration and advancement of multi-organ-on-a-chip
2
作者 Chen-Xi Song Lu Huang 《Biomedical Engineering Communications》 2026年第1期1-3,共3页
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol... Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy. 展开更多
关键词 investigating complex disease mechanisms emulate complex interactions multiple human organs vitro sensor integration intelligent integration predictive accuracy physiological coupling multi organ chip microfluidic systemsthis
在线阅读 下载PDF
Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip 被引量:2
3
作者 Ren Li Mingxing Zhou +7 位作者 Jine Li Zihua Wang Weikai Zhang Chunyan Yue Yan Ma Hailin Peng Zewen Wei Zhiyuan Hu 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期148-157,共10页
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,whi... EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,which may be covered by the noises from majority of unmutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multimutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cellswere easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drugrelated mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations,but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy. 展开更多
关键词 EGFR mutation single-cell analysis Microfluidic chip Tyrosine kinase inhibitor
暂未订购
Single-event-effect propagation investigation on nanoscale system on chip by applying heavy-ion microbeam and event tree analysis 被引量:6
4
作者 Wei-Tao Yang Xue-Cheng Du +7 位作者 Yong-Hong Li Chao-Hui He Gang Guo Shu-Ting Shi Li Cai Sarah Azimi Corrado De Sio Luca Sterpone 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第10期156-165,共10页
The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locati... The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC. 展开更多
关键词 System on chip single-event effect Heavy-ion microbeam Event tree analysis
在线阅读 下载PDF
A modular single-cell pipette microfluidic chip coupling to ETAAS and ICP-MS for single cell analysis 被引量:4
5
作者 Xing Wei Meng Yang +4 位作者 Ze Jiang Jinhui Liu Xuan Zhang Mingli Chen Jianhua Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1373-1376,共4页
Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale b... Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale but low accuracy, incompetence in the acquirement of nano-upgraded single-cell liquid. Flow cytometry has been widely used in large-scale single-cell detection, while precise single-cell isolation relies on both a precision operating platform and a microscope, which is not only extremely inefficient, but also not conducive to couple with modern analytical instruments. Herein, we develop a modular single-cell pipette(m SCP) microfluidic chip with high efficiency and strong applicability for accurate direct capture of single viable cell from cell suspensions into nanoliter droplets(30-1000 n L). The m SCP is used as a sampling platform for the detection of Cd Te quantum dots in single cells with electrothermal atomic absorption spectrometry(ETAAS) for the first time. It also ensures precise single-cell sampling and detection by inductively coupled plasma mass spectrometry(ICP-MS). 展开更多
关键词 single-cell pipette Microfluidic chip single-cell capture ETAAS ICP-MS CdTe QDs
原文传递
DEVELOPMENT OF SINGLE-PHASED WATER-COOLING RADIATOR FOR COMPUTER CHIP 被引量:4
6
作者 ZENG Ping CHENG Guangming +3 位作者 LIU Jiulong YANG Zhigang SUN Xiaofeng PENG Taijiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期77-81,共5页
In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure a... In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software, ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator. 展开更多
关键词 Computer chip Water-cooling Piezoelectric pump Radiator ANSYS simulation Simulative heater
在线阅读 下载PDF
Single-event effects induced by medium-energy protons in 28 nm system-on-chip 被引量:4
7
作者 Wei-Tao Yang Qian Yin +6 位作者 Yang Li Gang Guo Yong-Hong Li Chao-Hui He Yan-Wen Zhang Fu-Qiang Zhang Jin-Hua Han 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期55-62,共8页
Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,r... Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,respectively.Single-bit upset and multicell upset events were observed,and an uppermost number of nine upset cells were discovered in the 90 MeV proton irradiation test.The results indicate that the SEE sensitivities of the 28 nm SoC to the 90 MeV and 70 MeV protons were similar.Cosmic Ray Effects on Micro-Electronics Monte Carlo simulations were analyzed,and it demonstrates that protons can induce effects in a 28 nm SoC if their energies are greater than 1.4 MeV and that the lowest corresponding linear energy transfer was 0.142 MeV cm^2 mg^-1.The similarities and discrepancies of the SEEs induced by the 90 MeV and 70 MeV protons were analyzed. 展开更多
关键词 single-event effect PROTON SYSTEM-ON-chip
在线阅读 下载PDF
Machinability of elliptical ultrasonic vibration millingγ-TiAl:Chip formation,edge breakage,and subsurface layer deformation 被引量:2
8
作者 Ziwen XIA Chenwei SHAN +3 位作者 Menghua ZHANG Wengang LIU Minchao CUI Ming LUO 《Chinese Journal of Aeronautics》 2025年第3期624-644,共21页
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli... Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl. 展开更多
关键词 Γ-TIAL Elliptical ultrasonic vibration millingi chip formation Edge breakage Microstructure
原文传递
Evolution of undeformed chip thickness and grinding forces in grinding of K4002 nickel-based superalloy using corundum abrasive wheels 被引量:1
9
作者 Yang CAO Biao ZHAO +6 位作者 Wenfeng DING Xiaofeng JIA Bangfu WU Fei LIU Yanfang ZHU Qi LIU Dongdong XU 《Chinese Journal of Aeronautics》 2025年第1期131-146,共16页
The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusio... The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy. 展开更多
关键词 K4002 nickel-based superalloy Grinding force Material removal mechanism Undeformed chip thickness Quantity of active abrasive grains
原文传递
Catalpol Promotes Differentiation of Neural Stem Cells into Oligodendrocyte via Caveolin-1-dependent Pathway in The 3D Microfluidic Chip
10
作者 WANG Ya-Chen WANG Liang +1 位作者 SHEN Li-Ming LIU Jing 《生物化学与生物物理进展》 北大核心 2025年第11期2842-2853,共12页
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri... Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation. 展开更多
关键词 CATALPOL neural stem cells OLIGODENDROCYTES DIFFERENTIATION CAVEOLIN-1 microfluidic chip
原文传递
征稿通知丨第十一届中国健康信息处理大会(CHIP 2025)
11
作者 《中文信息学报》 北大核心 2025年第9期22-22,共1页
大会介绍中国健康信息处理大会(China Health Information Processing Conference,CHIP)是中国中文信息学会(CIPS)医疗健康与生物信息处理专业委员会开展的“以信息处理技术助力探索生命之奥秘、提高健康之质量、提升医疗之水平”为主... 大会介绍中国健康信息处理大会(China Health Information Processing Conference,CHIP)是中国中文信息学会(CIPS)医疗健康与生物信息处理专业委员会开展的“以信息处理技术助力探索生命之奥秘、提高健康之质量、提升医疗之水平”为主旨的年度会议。CHIP是中国健康信息处理领域的重要会议,是世界各地学术界、企业界和政府部门的研究人员和从业人士分享创意,进一步推广领域研究成果和经验的重要平台。本次第十一届中国健康信息处理大会(CHIP 2025)将于2025年11月14-16日在广东东莞举行。我们诚挚地邀请大家莅临CHIP 2025,共襄盛举。 展开更多
关键词 chip 医疗健康 中国中文信息学会
暂未订购
CHIP/STUB1在肿瘤中的研究进展
12
作者 顾雨洁 朱浩楠 束永前 《临床肿瘤学杂志》 2025年第8期803-809,共7页
热体克蛋白70羧基末端相互作用蛋白(CHIP)或称为STIP1同源性和包含U-Box蛋白1(STUB1)是一种重要的E3泛素化连接酶,在多种肿瘤的发生发展以及转移侵袭中发挥多重作用。CHIP通过介导错误折叠蛋白的泛素化降解,维持细胞内蛋白质的稳态,并... 热体克蛋白70羧基末端相互作用蛋白(CHIP)或称为STIP1同源性和包含U-Box蛋白1(STUB1)是一种重要的E3泛素化连接酶,在多种肿瘤的发生发展以及转移侵袭中发挥多重作用。CHIP通过介导错误折叠蛋白的泛素化降解,维持细胞内蛋白质的稳态,并与热休克蛋白(HSP)70和HSP90形成复合物,影响细胞的生存和应激反应。研究表明,CHIP在多种肿瘤中表现出双重角色:一方面,它通过抑制肿瘤干细胞特性和促进抑制因子的降解发挥抑癌作用;另一方面,在某些情况下,CHIP可能促进肿瘤的生长和转移。CHIP的表达和活性受到多条上游信号通路的调节,包括蛋白激酶B(AKT)、丝裂原活化蛋白激酶(MAPK)和核因子-κB(NF-κB)等,这些通路在肿瘤的增殖和转移中具有重要作用。此外,表观遗传学调控也显著影响CHIP的功能。随着对CHIP功能理解的深入,越来越多的研究开始探索其作为潜在治疗靶点的应用价值。本文系统综述了CHIP的功能特性及其在肿瘤中的多重作用,旨在为进一步探索其在癌症的早期诊断和治疗策略中的应用提供新的思路和方向。 展开更多
关键词 肿瘤 chip STUB1 肿瘤进展 治疗靶点
暂未订购
A Single-Chip UHF RFID Reader Transceiver IC
13
作者 Runxi Zhang Chunqi Shi Zongsheng Lai 《Communications and Network》 2013年第3期563-569,共7页
A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2... A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2C with fully-compliant China 800/900 MHz RFID draft, ISO/IEC 18000-6C protocol and ETSI 302 208-1 local regulation. The normal mode receiver in the presence of -3 dBm self-jammer achieves -75 dBm 1% PER sensitivity. The linear class-A PA integrated in transmitter has 25 dBm OP1 dB output power for CW. The fully-integrated fractional-N fre-quency synthesizer is designed based on MASH 1-1-1 sigma-delta modulator and 1.8 GHz fundamental frequency LC-VCO for lower in-band and out-of-band phase noise. The measured phase noise is up to -106 dBc/Hz@200 kHz and -131 dBc/Hz@1 MHz offset from center frequency and the integrated RMS jitter from 10 kHz to 10 MHz is less than 1.6 pS. The chip dissipates 330 mA from 3.3 V power supply when transmitting 22.4 dBm CW signal and the PAE of linear PA is up to 26%. The chip die area is 16.8 mm2. 展开更多
关键词 Integrated CIRCUIT READER TRANSCEIVER single-chip UHF RFID
在线阅读 下载PDF
Compact Cold-Atom Platform Based on Optical Grating and Planar Coil Chips
14
作者 Chang-Jiang Huang Lei Xu +4 位作者 Liang Chen Chuan-Feng Li Guang-Can Guo Chang-Ling Zou Guo-Yong Xiang 《Chinese Physics Letters》 2025年第6期58-62,共5页
We present a compact cold atom platform where an optical grating chip and planar coil chip are placed inside a compact vacuum chamber to create a magneto-optical trap.This approach significantly reduces the system vol... We present a compact cold atom platform where an optical grating chip and planar coil chip are placed inside a compact vacuum chamber to create a magneto-optical trap.This approach significantly reduces the system volume to about 20×20×20 cm^(3) compared to conventional vacuum systems and offers greater flexibility in accessing the trapped atoms.We demonstrate the trapping of 3×10^(5) cold rubidium atoms at a temperature of 100μK in a vacuum pressure below 10^(−7) mbar.The simplified optical geometry,low power consumption,and high degree of integration make this a promising platform for portable and versatile cold-atom devices in quantum sensing,timing,and information processing. 展开更多
关键词 optical grating chip conventional vacuum systems planar coil chip rubidium atoms compact cold atom platform compact vacuum chamber
原文传递
Research on optical soliton characteristics GaSb-based~2μm wavelength two-section integrated optical chip
15
作者 Wenjun Yu Zhongliang Qiao +12 位作者 Xiang Li Jia Xu Brian Sia Dengqun Weng Xiaohu Hou Zaijin Li Lin Li Hao Chen Zhibin Zhao Yi Qu Chongyang Liu Hong Wang Yu Zhang Zhichuan Niu 《Journal of Semiconductors》 2025年第11期56-68,共13页
The optical soliton characteristics of GaSb-based~2μm wavelength integrated optical chips have broad application prospects in optoelectronic fields such as optical communications,infrared countermeasures,and gas envi... The optical soliton characteristics of GaSb-based~2μm wavelength integrated optical chips have broad application prospects in optoelectronic fields such as optical communications,infrared countermeasures,and gas environment monitoring.In the research of two-section integrated optical chips,more attention is paid to their passive mode-locked characteristics.The ability of its structure to generate stable soliton transmission has not yet been studied,which will limit its further application in high-performance near-mid infrared optoelectronic technology.In this paper,we design and prepare a GaSb-based~2μm wave-length two-section integrated semiconductor laser chip structure,and test and analyze its related properties of soliton,includ-ing power−injection current−voltage(P−I−V),temperature and mode-locked characteristics.Experimental results show that the chip can achieve stable mode-locked operation at nearly~2μm wavelength and present the working characteristics of near opti-cal soliton states and multi-peak optical soliton states.By comparing and analyzing the measured optical pulse sequence curve with the numerical fitting based on the pure fourth order soliton approximation solution,it is confirmed that the two-section integrated optical chip structure can generate stable transmission of multi-peak optical soliton.This provides a research direc-tion for developing near-mid infrared mode-locked integrated optical chips with high-performance property of optical soliton. 展开更多
关键词 integrated optical chip GaSb-based MODE-LOCKED optical soliton
在线阅读 下载PDF
Optimization of wide frequency range 6H-SiC MEMS chips for a fiber optic Fabry–Perot accelerometer
16
作者 Mariano Mahissi Xinli Ma +2 位作者 Weiming Cai Xianmin Zhang Michel Dossou 《Chinese Physics B》 2025年第7期326-332,共7页
Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines co... Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995. 展开更多
关键词 triangular chip ACCELEROMETER MEMS working frequency range optical fiber
原文传递
Void Formation Analysis in the Molded Underfill Process for Flip-Chip Packaging
17
作者 Ian Hu Tzu-Chun Hung +2 位作者 Mu-Heng Zhou Heng-Sheng Lin Dao-Long Chen 《Computers, Materials & Continua》 2025年第7期537-551,共15页
Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulatin... Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield. 展开更多
关键词 Flip chip transfer molding molded underfill void formation capillary force
在线阅读 下载PDF
Photonic Chip Based on Ultrafast Laser-Induced Reversible Phase Change for Convolutional Neural Network
18
作者 Jiawang Xie Jianfeng Yan +5 位作者 Haoze Han Yuzhi Zhao Ma Luo Jiaqun Li Heng Guo Ming Qiao 《Nano-Micro Letters》 2025年第8期53-66,共14页
Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips... Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence. 展开更多
关键词 Photonic chip Ultrafast laser Phase change Convolutional neural network
在线阅读 下载PDF
The integration of microelectronic and photonic circuits on a single silicon chip for high-speed and low-power optoelectronic technology
19
作者 Rajeev Gupta Ajay Kumar +17 位作者 Manoj Kumar Rajesh Singh Anita Gehlot Purnendu Shekhar Pandey Neha Yadav Kailash Pandey Ashish Yadav Neha Gupta Ranjeet Brajpuriya Shalendra Kumar Ajay Singh Verma Tanuj Kumar Yongling Wu Zheng Hongyu Abhijit Biswas Ajay Mittal Aniruddha Mondal Romanov Oleksandr Ivanovich 《Nano Materials Science》 2025年第3期305-315,共11页
The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements ... The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems. 展开更多
关键词 Microelectronic PHOTONICS Silicon chip Optical modulators Photonic transceivers Optical filters
在线阅读 下载PDF
Effective working regions of the grating chip for planar-integrated magneto-optics trap
20
作者 Chang-Jiang Huang Ling-Xiao Wang +4 位作者 Liang Chen Chuan-Feng Li Guang-Can Guo Chang-Ling Zou Guo-Yong Xiang 《Chinese Physics B》 2025年第7期388-392,共5页
We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the la... We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the laser beam contributing to MOT:a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams.The latter three regions are the effective regions of the grating chip.It is demonstrated that only three3.5 mm radius grating regions can produce a MOT that is capable of trapping 105atoms with a temperature below 150μK,retaining over 60%of atoms compared to a complete grating chip.This finding suggests that more than 60%of the grating chip area can be saved for other on-chip components,such as metasurfaces and nanophotonic devices,without significantly compromising MOT performance,paving the way for more compact and versatile atom–photon interfaces. 展开更多
关键词 cold atoms grating chip magneto-optical trap(MOT)
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部