Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection ...Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.展开更多
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite...Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.展开更多
Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ...Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.展开更多
Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the c...Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis.展开更多
The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon ...The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.展开更多
The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements ...The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems.展开更多
A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage ca...A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage can be obtained through D/A converter (DAC0832) so that different voltages can be provided by operational amplifier. The output voltage varies from 0 V to 12 V with the incremental value of 0. 1 V. The actual output voltage is shown in the nixietube. This DC regulated power supply is characterized by simple structure and easy operation.展开更多
With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm...With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superallo...The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.展开更多
Developed a new program structure using in single chip computer system, which based on multitasking mechanism. Discussed the specific method for realization of the new structure. The applied sample is also provided.
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,whi...EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,which may be covered by the noises from majority of unmutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multimutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cellswere easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drugrelated mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations,but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.展开更多
Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system u...Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.展开更多
Concentration gradient and fluid shear stress(FSS)for cell microenvironment were investigated through microfluidic technology.The Darcy–Weisbach equation combined with computational fluid dynamics modeling was exploi...Concentration gradient and fluid shear stress(FSS)for cell microenvironment were investigated through microfluidic technology.The Darcy–Weisbach equation combined with computational fluid dynamics modeling was exploited to design the microfluidic chip,and the FSS distribution on the cell model with varying micro-channels(triangular,conical,and elliptical).The diffusion with the incompressible laminar flow model by solving the time-dependent diffusion–convection equation was applied to simulate the gradient profiles of concentration in the micro-channels.For the study of single cell in-depth,the FSS was investigated by the usage of polystyrene particles and the concentration diffusion distribution was studied by the usage of different colors of dyes.A successful agreement between model simulations and experimental data was obtained.Finally,based on the established method,the communication between individual cells was envisaged and modeled.The developed method provides valuable insights and allows to continuously improve the design of microfluidic devices for the study of single cell,the occurrence and development of tumors,and therapeutic applications.展开更多
Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,r...Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,respectively.Single-bit upset and multicell upset events were observed,and an uppermost number of nine upset cells were discovered in the 90 MeV proton irradiation test.The results indicate that the SEE sensitivities of the 28 nm SoC to the 90 MeV and 70 MeV protons were similar.Cosmic Ray Effects on Micro-Electronics Monte Carlo simulations were analyzed,and it demonstrates that protons can induce effects in a 28 nm SoC if their energies are greater than 1.4 MeV and that the lowest corresponding linear energy transfer was 0.142 MeV cm^2 mg^-1.The similarities and discrepancies of the SEEs induced by the 90 MeV and 70 MeV protons were analyzed.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
We propose a wire configuration to create a one-dimensional (1D) array of magnetic microtraps for trapping ultracold atoms. The configuration is formed by replacing the central part of the Z-wire pattern with a zigz...We propose a wire configuration to create a one-dimensional (1D) array of magnetic microtraps for trapping ultracold atoms. The configuration is formed by replacing the central part of the Z-wire pattern with a zigzag wire. We simulate the performance of this pattern by the finite element method which can take both the width and depth of the wire into consideration. The result of simulation shows that this configuration can create magnetic microtraps which can be separated and combined by changing bias magnetic field. We manage to split Z-wire trap and prove that similar result can occur for the new wire configuration. The fabrication processes of the atom chip are also introduced. Finally we discuss the loading method.展开更多
The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locati...The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.展开更多
Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale b...Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale but low accuracy, incompetence in the acquirement of nano-upgraded single-cell liquid. Flow cytometry has been widely used in large-scale single-cell detection, while precise single-cell isolation relies on both a precision operating platform and a microscope, which is not only extremely inefficient, but also not conducive to couple with modern analytical instruments. Herein, we develop a modular single-cell pipette(m SCP) microfluidic chip with high efficiency and strong applicability for accurate direct capture of single viable cell from cell suspensions into nanoliter droplets(30-1000 n L). The m SCP is used as a sampling platform for the detection of Cd Te quantum dots in single cells with electrothermal atomic absorption spectrometry(ETAAS) for the first time. It also ensures precise single-cell sampling and detection by inductively coupled plasma mass spectrometry(ICP-MS).展开更多
文摘Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.
基金supported by the National Natural Science Foundation of China(Nos.22406081,22276086,22306086)the Natural Science Foundation of Jiangxi Province(No.20232BAB213029),all of which are greatly acknowledged by the authors.
文摘Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.
基金supported by the Jiangsu Province Traditional Chinese Medicine Technology Development Plan Project,Nos.MS2023113(to JC),MS2022090Young and Middle-aged Academic Leaders of Jiangsu Qing-Lan Project(to GL).
文摘Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金financially supported by the National Natural Science Foundation of China(No.22272159)the Chinese Academy of Sciences(No.KFJ-XCZX-202304).
文摘Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis.
基金supported by the National Natural Science Foundation of China (Grant Nos.12494604,12393834,12393831,62274014,6223501662335015)the National Key R&D Program of China (Grant No.2024YFA1208900)。
文摘The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.
文摘The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems.
文摘A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage can be obtained through D/A converter (DAC0832) so that different voltages can be provided by operational amplifier. The output voltage varies from 0 V to 12 V with the incremental value of 0. 1 V. The actual output voltage is shown in the nixietube. This DC regulated power supply is characterized by simple structure and easy operation.
基金Supported by the National Natural Science Foundation of China(11275164)~~
文摘With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金National Science and Technology Major Project(J2019-VI-0022-0138)。
文摘The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.
文摘Developed a new program structure using in single chip computer system, which based on multitasking mechanism. Discussed the specific method for realization of the new structure. The applied sample is also provided.
基金supported by the National HighTech R&D Program of China(No.2015AA020408)National Natural Science Foundation of China(No.61204118,81500900 and21503054)+1 种基金Beijing Municipal Science and Technology Project(No.Z171100002017013)Key Research Program of the Chinese Academy of Sciences,Grant NO.KFZD-SW-210
文摘EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,which may be covered by the noises from majority of unmutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multimutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cellswere easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drugrelated mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations,but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.
文摘Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.
基金National Natural Science Foundation of China(No.21804045)Fujian Provincial Department of Science and Technology(No.2019I0014)Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University(No.ZQN-PY612)。
文摘Concentration gradient and fluid shear stress(FSS)for cell microenvironment were investigated through microfluidic technology.The Darcy–Weisbach equation combined with computational fluid dynamics modeling was exploited to design the microfluidic chip,and the FSS distribution on the cell model with varying micro-channels(triangular,conical,and elliptical).The diffusion with the incompressible laminar flow model by solving the time-dependent diffusion–convection equation was applied to simulate the gradient profiles of concentration in the micro-channels.For the study of single cell in-depth,the FSS was investigated by the usage of polystyrene particles and the concentration diffusion distribution was studied by the usage of different colors of dyes.A successful agreement between model simulations and experimental data was obtained.Finally,based on the established method,the communication between individual cells was envisaged and modeled.The developed method provides valuable insights and allows to continuously improve the design of microfluidic devices for the study of single cell,the occurrence and development of tumors,and therapeutic applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575138,11835006,11690040,and 11690043)
文摘Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,respectively.Single-bit upset and multicell upset events were observed,and an uppermost number of nine upset cells were discovered in the 90 MeV proton irradiation test.The results indicate that the SEE sensitivities of the 28 nm SoC to the 90 MeV and 70 MeV protons were similar.Cosmic Ray Effects on Micro-Electronics Monte Carlo simulations were analyzed,and it demonstrates that protons can induce effects in a 28 nm SoC if their energies are greater than 1.4 MeV and that the lowest corresponding linear energy transfer was 0.142 MeV cm^2 mg^-1.The similarities and discrepancies of the SEEs induced by the 90 MeV and 70 MeV protons were analyzed.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB921202)the National Natural Science Foundation of China(Grant No.10974210)
文摘We propose a wire configuration to create a one-dimensional (1D) array of magnetic microtraps for trapping ultracold atoms. The configuration is formed by replacing the central part of the Z-wire pattern with a zigzag wire. We simulate the performance of this pattern by the finite element method which can take both the width and depth of the wire into consideration. The result of simulation shows that this configuration can create magnetic microtraps which can be separated and combined by changing bias magnetic field. We manage to split Z-wire trap and prove that similar result can occur for the new wire configuration. The fabrication processes of the atom chip are also introduced. Finally we discuss the loading method.
基金This work was supported by the National Natural Science Foundation of China(Nos.11575138,11835006,11690040,11690043,and 11705216)the Innovation Center of Radiation Application(No.KFZC2019050321)the China Scholarships Council program(No.201906280343).
文摘The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.
基金financial support of the National Natural Science Foundation of China (Nos. 21727811,21922402)the Fundamental Research Funds for the Central Universities (Nos. N2005003, N2105017)+1 种基金the Liaoning Revitalization Talents Program (No. XLYC1802016)Scientific Research Funding Project of the Education Department of Liaoning (No. LJKZ0007)。
文摘Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale but low accuracy, incompetence in the acquirement of nano-upgraded single-cell liquid. Flow cytometry has been widely used in large-scale single-cell detection, while precise single-cell isolation relies on both a precision operating platform and a microscope, which is not only extremely inefficient, but also not conducive to couple with modern analytical instruments. Herein, we develop a modular single-cell pipette(m SCP) microfluidic chip with high efficiency and strong applicability for accurate direct capture of single viable cell from cell suspensions into nanoliter droplets(30-1000 n L). The m SCP is used as a sampling platform for the detection of Cd Te quantum dots in single cells with electrothermal atomic absorption spectrometry(ETAAS) for the first time. It also ensures precise single-cell sampling and detection by inductively coupled plasma mass spectrometry(ICP-MS).