This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model ...This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model is simple and easy to implement, whereas double diode model has better accuracy which acquiesces for more precise forecast of PV systems performance. Exploration is done on the basis of simulation results and MATLAB tool is used to serve this purpose. Simulations are performed by varying distinct model parameters such as solar irradiance, temperature, value of parasitic resistances, ideality factor of diode and number of series and parallel connected solar cells used to assemble PV array. Conspicuous demonstration is executed to analyze effects of these specifications on the efficiency curve and power vs. voltage output characteristics of PV cell for specified models.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed struct...Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.展开更多
A rigorous theoretical model for Ino.53Gao.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation co...A rigorous theoretical model for Ino.53Gao.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition. In the model, low field impact ionizations in charge and absorption layers are allowed, while avalanche breakdown can occur only in the multiplication layer. The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition. When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value, generation-recombination in the absorption layer is the dominative mechanism; otherwise band-to-band tunneling in the multiplication layer dominates the dark counts. The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency. However, when the multiplication layer width exceeds 1 μm, the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes.展开更多
Gamma-ray(γ-ray)radiation for silicon single photon avalanche diodes(Si SPADs)is evaluated,with total dose of 100 krad(Si)and dose rate of 50 rad(Si)/s by using 60Co as theγ-ray radiation source.The breakdown voltag...Gamma-ray(γ-ray)radiation for silicon single photon avalanche diodes(Si SPADs)is evaluated,with total dose of 100 krad(Si)and dose rate of 50 rad(Si)/s by using 60Co as theγ-ray radiation source.The breakdown voltage,photocurrent,and gain have no obvious change after the radiation.However,both the leakage current and dark count rate increase by about one order of magnitude above the values before the radiation.Temperature-dependent current-voltage measurement results indicate that the traps caused by radiation function as generation and recombination centers.Both leakage current and dark count rate can be almost recovered after annealing at 200℃for about 2 hours,which verifies the radiation damage mechanics.展开更多
In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistabili...In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistability characteristics of the dominant and injected modes are strongly dependent on the injected input optical power and wavelength detuning in an SMFP-LD. We observe three types of hysteresis loops: counterclockwise, clockwise, and butterfly hysteresis with various loop widths. In the case of a bistability loop caused by injection power, the transition from counterclockwise to clockwise in the hysteresis direction with the wavelength detuning from 0.028 nm to 0.112 nm is observed in a way of butterfly hys- teresis for the dominant mode by increasing the wavelength detuning. The width of hysteresis loop, induced by wavelength detuning is also changed while the injection power is enhanced from -7 dBm to -5 dBm.展开更多
Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were...Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.展开更多
We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the ...We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.展开更多
To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an ...To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.展开更多
We examine the saturation of relative current gain of Ino.53Gao.47As/InP single photon avalanche diodes (SPADs) operated in Geiger mode. The punch-through voltage and breakdown voltage of the SPADs can be measured u...We examine the saturation of relative current gain of Ino.53Gao.47As/InP single photon avalanche diodes (SPADs) operated in Geiger mode. The punch-through voltage and breakdown voltage of the SPADs can be measured using a simple and accurate method. The analysis method is temperature-independent and can be applied to most SPADs.展开更多
A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16...A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation(QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence(≤0.5 dB) and the high conversion efficiency(CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring high CE levels.展开更多
The MINFLUX concept significantly improves the localization properties of single-molecule localization microscopy(SMLM)by overcoming the limit imposed by the fluorophore's photon counts.Typical MINFLUX microscopes...The MINFLUX concept significantly improves the localization properties of single-molecule localization microscopy(SMLM)by overcoming the limit imposed by the fluorophore's photon counts.Typical MINFLUX microscopes localize the target molecule by scanning a zero-intensity focus around the molecule in a circular trajectory,with smaller trajectory diameters yielding better localization uncertainties for a given number of photons.Since this approach requires the molecule to be within the scanned trajectory,MINFLUX typically relies on an iterative scheme with decreasing trajectory diameters.This iterative approach is prone to misplacements of the trajectory and increases the system's complexity.In this work,we introduce ISM-FLUX,a novel implementation of MINFLUX using image-scanning microscopy(ISM)with a single-photon avalanche diode array detector.ISM-FLUX provides a precise MINFLUX localization within the trajectory while maintaining a conventional photon-limited uncertainty outside it.The robustness of ISM-FLUX localization results in a larger localization range and greatly simplifies the architecture,which may facilitate broader adoption of MINFLUX.展开更多
The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simul...The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 ℃ using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p-n junction with an n-type doping concentration of 4 × 10^24 m-3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.展开更多
文摘This research appraises comparative analysis between single diode and double diode model of photovoltaic (PV) solar cells to enhance the conversion efficiency of power engendering PV solar systems. Single diode model is simple and easy to implement, whereas double diode model has better accuracy which acquiesces for more precise forecast of PV systems performance. Exploration is done on the basis of simulation results and MATLAB tool is used to serve this purpose. Simulations are performed by varying distinct model parameters such as solar irradiance, temperature, value of parasitic resistances, ideality factor of diode and number of series and parallel connected solar cells used to assemble PV array. Conspicuous demonstration is executed to analyze effects of these specifications on the efficiency curve and power vs. voltage output characteristics of PV cell for specified models.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
基金jointly supported by the National Key Research and Development Program of China (2019YFB22-05202)National Natural Science Foundation of China(61774152)
文摘Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.
基金supported by the National Basic Research Program of China (Grant Nos. G2001039302 and 007CB307001)the Guangdong Provincial Key Technology Research and Development Program,China (Grant No. 2007B010400009)
文摘A rigorous theoretical model for Ino.53Gao.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition. In the model, low field impact ionizations in charge and absorption layers are allowed, while avalanche breakdown can occur only in the multiplication layer. The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition. When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value, generation-recombination in the absorption layer is the dominative mechanism; otherwise band-to-band tunneling in the multiplication layer dominates the dark counts. The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency. However, when the multiplication layer width exceeds 1 μm, the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes.
基金the National Key Research and Development Program of China(Grant No.2017YFF0104801).
文摘Gamma-ray(γ-ray)radiation for silicon single photon avalanche diodes(Si SPADs)is evaluated,with total dose of 100 krad(Si)and dose rate of 50 rad(Si)/s by using 60Co as theγ-ray radiation source.The breakdown voltage,photocurrent,and gain have no obvious change after the radiation.However,both the leakage current and dark count rate increase by about one order of magnitude above the values before the radiation.Temperature-dependent current-voltage measurement results indicate that the traps caused by radiation function as generation and recombination centers.Both leakage current and dark count rate can be almost recovered after annealing at 200℃for about 2 hours,which verifies the radiation damage mechanics.
基金supported by the National Natural Science Foundation of China(Grant No.61205111)the Open Foundation of State Key Laboratory of Millimeter Waves,China(Grant No.K201219)the Natural Science Foundation of Chongqing Normal University,China(Grant No.2011XLZ06)
文摘In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistability characteristics of the dominant and injected modes are strongly dependent on the injected input optical power and wavelength detuning in an SMFP-LD. We observe three types of hysteresis loops: counterclockwise, clockwise, and butterfly hysteresis with various loop widths. In the case of a bistability loop caused by injection power, the transition from counterclockwise to clockwise in the hysteresis direction with the wavelength detuning from 0.028 nm to 0.112 nm is observed in a way of butterfly hys- teresis for the dominant mode by increasing the wavelength detuning. The width of hysteresis loop, induced by wavelength detuning is also changed while the injection power is enhanced from -7 dBm to -5 dBm.
文摘Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.
基金supported by the National Natural Science Foundation of China(62250710162 and 12274406)the National Key Research and Development Program of China(2022YFA1405100).
文摘We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.
基金the National Key Research and Development Program of China(Grant No.2018YFB0904200).
文摘To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.
基金supported by the National Basic Research Program (973 Program) of China (Nos.G2001039302 and 007CB307001)the Guangdong Key Technologies R&D Program (No.2007B010400009)
文摘We examine the saturation of relative current gain of Ino.53Gao.47As/InP single photon avalanche diodes (SPADs) operated in Geiger mode. The punch-through voltage and breakdown voltage of the SPADs can be measured using a simple and accurate method. The analysis method is temperature-independent and can be applied to most SPADs.
文摘A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation(QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence(≤0.5 dB) and the high conversion efficiency(CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring high CE levels.
基金supported by the European Research Council,BrightEyes No.818699(E.S.,S.P.,M.O.H.,G.V.)the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No.890923(SMSPAD)(E.S.).
文摘The MINFLUX concept significantly improves the localization properties of single-molecule localization microscopy(SMLM)by overcoming the limit imposed by the fluorophore's photon counts.Typical MINFLUX microscopes localize the target molecule by scanning a zero-intensity focus around the molecule in a circular trajectory,with smaller trajectory diameters yielding better localization uncertainties for a given number of photons.Since this approach requires the molecule to be within the scanned trajectory,MINFLUX typically relies on an iterative scheme with decreasing trajectory diameters.This iterative approach is prone to misplacements of the trajectory and increases the system's complexity.In this work,we introduce ISM-FLUX,a novel implementation of MINFLUX using image-scanning microscopy(ISM)with a single-photon avalanche diode array detector.ISM-FLUX provides a precise MINFLUX localization within the trajectory while maintaining a conventional photon-limited uncertainty outside it.The robustness of ISM-FLUX localization results in a larger localization range and greatly simplifies the architecture,which may facilitate broader adoption of MINFLUX.
文摘The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 ℃ using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p-n junction with an n-type doping concentration of 4 × 10^24 m-3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.