期刊文献+
共找到4,746篇文章
< 1 2 238 >
每页显示 20 50 100
Optimization of single crystal surface and interface structures for electrocatalysis
1
作者 Haixiao Hu Haiyan Liang +6 位作者 Xiaoyan Liu Hehe Jiang Moyu Yi Yongzhong Wu Xiaopeng Hao Bin Chang Weijia Zhou 《Materials Reports(Energy)》 2025年第3期1-23,共23页
For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable sur... For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable surface and interfacial properties.Various single crystal types,including metals,semiconductors,ceramics,organics,and nanocrystals,exhibit superior catalytic selectivity and stability in reactions such as water splitting and carbon/nitrogen cycles,benefiting from high electrical conductivity,tunable energy bands,and active sites with high surface energy.Through surface modification,interfacial atomic doping,and heterostructure construction,the distribution of active sites,electronic structure,and mass transport can be precisely regulated,significantly optimizing the catalytic kinetics of single crystal materials.In situ characterizations elucidate catalytic mechanisms at the atomic scale,while emerging methods like AI-assisted synthesis and bio-template directed growth offer pathways to overcome bottlenecks in the precision and cost of single crystal preparation.In addressing stability challenges in complex environments,strategies such as organic-inorganic hybridization and gradient interface design effectively mitigate interfacial instability.Future research should focus on cross-scale structural regulation and multidisciplinary integration to facilitate the transition of single crystal electrocatalysts from fundamental research to industrial applications,enabling efficient energy conversion. 展开更多
关键词 single crystal materials single crystal synthesis Surface and interface engineering In situ characterizations ELECTROCATALYSIS
在线阅读 下载PDF
Advancing skeletal health and disease research with single-cell RNA sequencing
2
作者 Peng Lin Yi-Bo Gan +15 位作者 Jian He Si-En Lin Jian-Kun Xu Liang Chang Li-Ming Zhao Jun Zhu Liang Zhang Sha Huang Ou Hu Ying-Bo Wang Huai-Jian Jin Yang-Yang Li Pu-Lin Yan Lin Chen Jian-Xin Jiang Peng Liu 《Military Medical Research》 2025年第2期285-310,共26页
Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and mol... Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders.The advent of single-cell RNA sequencing(scRNA-seq)technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity.Nevertheless,investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges.In this comprehensive review,we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines.By utilizing these methodologies,crucial insights into the developmental dynamics,maintenance of homeostasis,and pathological processes involved in spine,joint,bone,muscle,and tendon disorders have been uncovered.Specifically focusing on the joint diseases of degenerative disc disease,osteoarthritis,and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension.These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders. 展开更多
关键词 Skeletal disorders Musculoskeletal system single-cell RNA sequencing(scRNA-seq) Cellular heterogeneity single cell suspension Bioinformatic analysis
原文传递
In-situ SEIRAS for dynamic single-atom catalysis
3
作者 Haifeng Qi Graham J.Hutchings 《Chinese Journal of Catalysis》 2025年第10期1-3,共3页
Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-... Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-atom catalysts(SACs)maximize metal utilization and exhibit distinct catalytic behaviors due to their atomically dispersed nature.Over the past decade,SACs have demonstrated exceptional performance in various electrochemical and thermocatalytic reactions[1–3].However,despite these promising developments,several fundamental challenges hinder their practical implementation and large-scale commercialization.SACs face three major challenges:catalytic activity,stability,and scalable synthesis.Their isolated nature limits multi-electron transfer processes,making reaction kinetics highly sensitive to the coordination environment.To enhance catalytic activity,strategies such as secondary coordination effect,doping,and/or dual-atom configuration can be employed.Stability is another key issue,as single atoms tend to aggregate or undergo oxidation under reaction conditions,leading to performance decay.Strategies like strong metal-support interaction and ligand stabilization can be adopted to improve the durability of SACs. 展开更多
关键词 single atom catalysts catalytic activity heterogeneous catalysiswhich scalable synthesis electrochemical thermocatalytic reactions howeverdespite coordination environment nanoparticle catalystssingle atom strong metal support interaction
在线阅读 下载PDF
Activin A receptor type 1C single nucleotide polymorphisms associated with esophageal squamous cell carcinoma risk in Chinese population 被引量:2
4
作者 Si-Yun Lin Hou Huang +13 位作者 Jin-Jie Yu Feng Su Tian Jiang Shao-Yuan Zhang Lu Lv Tao Long Hui-Wen Pan Jun-Qing Qi Qiang Zhou Wei-Feng Tang Guo-Wen Ding Li-Ming Wang Li-Jie Tan Jun Yin 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期39-51,共13页
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th... BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population. 展开更多
关键词 Activin A receptor type 1C single nucleotide polymorphisms Esophageal squamous cell carcinoma Genetic susceptibility Hospital-based cohort study
暂未订购
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
5
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping single crystal Lithium tantalate crystal
原文传递
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:1
6
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels 被引量:1
7
作者 Yadong SONG Yanpeng ZOU +2 位作者 Yuan YAO Ting QIN Longjiang SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期438-455,共18页
In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of v... In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels. 展开更多
关键词 train tail swaying wind tunnel experiment field test single line tunnels AERODYNAMICS co simulation electric multiple units emus inside vortex induced vibration
原文传递
Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries 被引量:1
8
作者 Yirong Xiao Le Yang +5 位作者 Chaoyuan Zeng Ze Hua Shuangquan Qu Niaz Ahmad Ruiwen Shao Wen Yang 《Journal of Energy Chemistry》 2025年第3期377-385,共9页
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ... Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles. 展开更多
关键词 single crystal nickel-rich oxide cathode Lattice stretches and distortions Reaction heterogeneity Percolation network All-solid-state lithium batteries
在线阅读 下载PDF
Deformation and Fracture Mechanism of Third-Generation Single Crystal Superalloy During In-situ Tension at Room Temperature
9
作者 Wang Rui Li Jiarong +2 位作者 Yue Xiaodai Zhao Jinqian Yang Wanpeng 《稀有金属材料与工程》 北大核心 2025年第6期1410-1416,共7页
The deformation and fracture of a third-generation single crystal superalloy during in-situ tension at room temperature were investigated at multiple scales by scanning electron microscope,electron back-scattered diff... The deformation and fracture of a third-generation single crystal superalloy during in-situ tension at room temperature were investigated at multiple scales by scanning electron microscope,electron back-scattered diffractometer,and transmission electron microscope to reveal the deformation and fracture mechanism during tension.The proportion of low angle boundaries(LABs)with angles from 2.5°to 5.5°increases during tension.The change in LABs is particularly pronounced after elongation over 7%.The initiation of microcracks is caused by{111}<110>slip systems.After initiation,the crack size along the stress direction increases whereas the size extension along slip systems is suppressed.The fracture mode of the alloy is quasi-cleavage fracture and the slip lines near the fracture are implicit at room temperature. 展开更多
关键词 single crystal superalloy in-situ tension MICROSTRUCTURE slip system FRACTURE
原文传递
Effect of PbTiO_(3) Content Variation on High-power Performance of PMN-PT Single Crystal
10
作者 WANG Xiaobo ZHU Yuliang +3 位作者 XUE Wenchao SHI Ruchuan LUO Bofeng LUO Chengtao 《无机材料学报》 北大核心 2025年第7期840-846,I0017,共8页
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o... Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element. 展开更多
关键词 piezoelectric single crystal PMN-PT high-power testing constant voltage method material parameter
在线阅读 下载PDF
Improvement of Lattice Parameter Accuracy in Single Crystal XRD Based on a Laser-Induced X-Ray Source
11
作者 LIU Jin WANG Qiannan LI Jiangtao 《高压物理学报》 北大核心 2025年第4期9-15,共7页
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more... The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions. 展开更多
关键词 lattice parameter measurement accuracy single crystal X-ray diffraction iterative algorithm high pressure ratio of compression
在线阅读 下载PDF
Effect of Withdrawal Rate on Non-uniform Distribution of Eutectic in Ni-based Single Crystal Superalloy Castings
12
作者 Zhao Yunxing Yu Jingyi +1 位作者 Ma Dexin Huang Zaiwang 《稀有金属材料与工程》 北大核心 2025年第8期1934-1939,共6页
The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdraw... The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdrawal rate is a critical parameter affecting the spatial distribution ofγ/γ′eutectic along gravity direction.The results show that theγ/γ′eutectic fraction of the upper platform surface is always higher than that of the lower one,regardless of withdrawal rate.As the withdrawal rate decreases,there is a significant increase inγ/γ′eutectic fraction on the upper surface,while it decreases on the lower surface.The upward accumulation ofγ/γ′eutectic becomes more severe as the withdrawal rate decreases.It is also found that the percentage of Al+Ta is positively correlated with theγ/γ′eutectic fraction.Thermo-solute convection of Al and Ta solutes in the solidification front is the prime reason for the non-uniform distribution of eutectic.The non-uniform distribution ofγ/γ′eutectic cannot be eliminated even after subsequent solution heat treatment,resulting in excess eutectic on the upper surface and thus leading to the scrapping of the blade. 展开更多
关键词 Ni-based single crystal superalloy EUTECTICS withdrawal rate thermo-solute convection
原文传递
Periodic Traveling Wave Solutions of a Single Population Model with Advection and Distributed Delay
13
作者 GUO Zilin YU Tao TANG Xiaosong 《应用数学》 北大核心 2025年第4期988-995,共8页
In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave so... In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model. 展开更多
关键词 single population model Advection Distributed delay Periodic traveling wave solution
在线阅读 下载PDF
A rhombic Dy_(4)-based complex showing remarkable single-molecule magnet behavior
14
作者 HOU Yinling JI Jia +5 位作者 YU Hong BIAN Xiaoyun GUAN Xiaofen QIU Jing REN Shuyi FANG Ming 《无机化学学报》 北大核心 2025年第3期605-612,共8页
A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in... A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322. 展开更多
关键词 tetranuclear Dy(Ⅲ)complex Schiff base ligand crystal structure magnetic property single⁃molecule magnet
在线阅读 下载PDF
Visible to near-infrared photodetector based on organic semiconductor single crystal
15
作者 LI Xiang HU Jin-Han +7 位作者 ZHONG Zhi-Peng CHEN Yu-Zhong WANG Zhi-Qiang SONG Miao-Miao WANG Yang ZHANG Lei LI Jian-Feng HUANG Hai 《红外与毫米波学报》 北大核心 2025年第1期46-51,共6页
Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ... Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors. 展开更多
关键词 near-infrared photodetector organic semiconductor Y6-1O single crystal spectral response
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
16
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
Single Sign-On Security and Privacy:A Systematic Literature Review
17
作者 Abdelhadi Zineddine Yousra Belfaik +2 位作者 Abdeslam Rehaimi Yassine Sadqi Said Safi 《Computers, Materials & Continua》 2025年第9期4019-4054,共36页
With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminati... With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminating the need to provide their credentials repeatedly.However,this convenience raises concerns about user security and privacy.The increasing reliance on SSO and its potential risks make it imperative to comprehensively review the various SSO security and privacy threats,identify gaps in existing systems,and explore effective mitigation solutions.This need motivated the first systematic literature review(SLR)of SSO security and privacy,conducted in this paper.The SLR is performed based on rigorous structured research methodology with specific inclusion/exclusion criteria and focuses specifically on the Web environment.Furthermore,it encompasses a meticulous examination and thematic synthesis of 88 relevant publications selected out of 2315 journal articles and conference/proceeding papers published between 2017 and 2024 from reputable academic databases.The SLR highlights critical security and privacy threats relating to SSO systems,reveals significant gaps in existing countermeasures,and emphasizes the need for more comprehensive protection mechanisms.The findings of this SLR will serve as an invaluable resource for scientists and developers interested in enhancing the security and privacy preservation of SSO and designing more efficient and robust SSO systems,thus contributing to the development of the authentication technologies field. 展开更多
关键词 single sign-on AUTHENTICATION OAuth2.0 OpenID connect security PRIVACY mitigation solutions
在线阅读 下载PDF
Single-atom catalysts for electrocatalytic nitrogen reduction to ammonia:A review
18
作者 Qiaorui Wang Dingyun Liang +7 位作者 Zhongwen Zhang Yalan Yang Yunran Zhang Yirong Wang Lei Liu Wenfeng Jiang Muneerah Alomar Li-Long Zhang 《Chinese Journal of Structural Chemistry》 2025年第6期58-74,共17页
The electrochemical nitrogen reduction reaction(eNRR)presents a sustainable alternative to the energy-intensive Haber-Bosch process for ammonia(NH_(3))production.This review examines the fundamental principles of eNRR... The electrochemical nitrogen reduction reaction(eNRR)presents a sustainable alternative to the energy-intensive Haber-Bosch process for ammonia(NH_(3))production.This review examines the fundamental principles of eNRR,emphasizing the critical roles of proton-exchange membranes and electrolytes in facilitating efficient nitrogen(N_(2))reduction.Special attention is given to single-atom catalysts(SACs),highlighting their unique structural and electronic properties that contribute to enhanced catalytic performance.The discussions encompass SACs based on precious metals,non-precious metals,and non-metallic materials,delving into their synthesis methods,coordination environments,and activity in the eNRR.This review also elucidates current challenges in the field and proposes future research directions aimed at optimizing SACs design to enhance eNRR efficiency. 展开更多
关键词 Nitrogen single atom catalyst ELECTROLYTE Reduction AMMONIA
原文传递
A single-cell landscape of the regenerating spinal cord of zebrafish
19
作者 Lei Yao Xinyi Cai +5 位作者 Saishuai Yang Yixing Song Lingyan Xing Guicai Li Zhiming Cui Jiajia Chen 《Neural Regeneration Research》 2026年第2期780-789,共10页
Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ... Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies. 展开更多
关键词 dividing oligodendrocyte macrophage MICROGLIA neuron proliferating oligodendrocyte radial glia single cell sequencing spinal cord regeneration transcriptome ZEBRAFISH
暂未订购
Effect of lanthanum on microstructure of a nickel-based single crystal superalloy
20
作者 Hong Gao Kai Guan +3 位作者 Ren-jie Cui Jian-chao Qin Zi-han Zhao Zhao-hui Huang 《China Foundry》 2025年第1期55-64,共10页
To enhance the high-temperature oxidation resistance and mechanical properties of a secondgeneration nickel-based superalloy,various concentrations of lanthanum(La)ranging from 5.0×10^(-5)wt.%to 3.4×10^(-4)w... To enhance the high-temperature oxidation resistance and mechanical properties of a secondgeneration nickel-based superalloy,various concentrations of lanthanum(La)ranging from 5.0×10^(-5)wt.%to 3.4×10^(-4)wt.%are added to the alloy.The microstructure of the nickel-based single crystal superalloy with trace of La was examined by means of SEM,EDS and TEM.Results show the addition of La decreases the segregation of elements and increases the amount ofγ/γ′eutectics of the as-cast alloy,and in the interdendritic region,the growth of eutectics is accompanied by the growth of strip clusters composed of Ni_(5)La and Ni_(3)Ta.As the La content in the alloy increases,the proportion of Ni_(5)La in the cluster increases.After heat treatment,incipient melting occurs in the cluster regions,leading to an increase in microporosity compared to the original as-cast samples.Furthermore,the heat treatment alters the shape of the clusters from a strip morphology to an elliptical one,and it changes their composition from Ni_(5)La and Ni_(3)Ta to a combination of Ni_(5)La,Ni_(3)Ta,and MC carbides. 展开更多
关键词 single crystal superalloy LANTHANUM MICROSTRUCTURE heat-treatment precipitate phase
在线阅读 下载PDF
上一页 1 2 238 下一页 到第
使用帮助 返回顶部