Data security has become a growing priority due to the increasing frequency of cyber-attacks,necessitating the development of more advanced encryption algorithms.This paper introduces Single Qubit Quantum Logistic-Sin...Data security has become a growing priority due to the increasing frequency of cyber-attacks,necessitating the development of more advanced encryption algorithms.This paper introduces Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps(SQQLSR),a quantum-based chaos map designed to generate one-dimensional chaotic sequences with an ultra-wide parameter range.The proposed model leverages quantum superposition using Hadamard gates and quantum rotations along the X,Y,and Z axes to enhance randomness.Extensive numerical experiments validate the effectiveness of SQQLSR.The proposed method achieves a maximum Lyapunov exponent(LE)of≈55.265,surpassing traditional chaotic maps in unpredictability.The bifurcation analysis confirms a uniform chaotic distribution,eliminating periodic windows and ensuring higher randomness.The system also generates an expanded key space exceeding 10^(40),enhancing security against brute-force attacks.Additionally,SQQLSR is applied to image encryption using a simple three-layer encryption scheme combining permutation and substitution techniques.This approach is intentionally designed to highlight the impact of SQQLSR-generated chaotic sequences rather than relying on a complex encryption algorithm.Theencryption method achieves an average entropy of 7.9994,NPCR above 99.6%,and UACI within 32.8%–33.8%,confirming its strong randomness and sensitivity to minor modifications.The robustness tests against noise,cropping,and JPEG compression demonstrate its resistance to statistical and differential attacks.Additionally,the decryption process ensures perfect image reconstruction with an infinite PSNR value,proving the algorithm’s reliability.These results highlight SQQLSR’s potential as a lightweight yet highly secure encryption mechanism suitable for quantum cryptography and secure communications.展开更多
In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This intr...In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This introduces the challenges of presenting encryption systems that can encode videos securely and efficiently at the same time.This paper presents an efficient opto-video encryption system using Logistic Adjusted Sine map(LASM)in the Fractional Fourier Transform(FrFT).In the presented opto-video LASM-based FrFT scheme,the encoded video is split into distinct frames and transformed into optical signals utilizing an optical supply.Each of the developed optical video frames is ciphered by utilizing the LASM in optical FrFT system using two-phase modulation forms on the video frame,the first in the time-domain and the second in the FrFT domain.In the end,the ciphervideo frame is spotted utilizing a CCD digital camera and transformed into a digital structure that can be managed using a computer.We test the proposed opto-video LASM-based FrFT scheme using various security tools.The outcomes demonstrate that the presented scheme can effectively encrypt and decrypt video signals.In addition,it encrypts videos with a high level of encryption qualitywithout sacrificing its resistance to noise immunity.Finally,the test outcomes demonstrate that the presented scheme is immune to known attacks.展开更多
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co...The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.展开更多
基金funded by Kementerian Pendidikan Tinggi,Sains,dan Teknologi(Kemdiktisaintek),Indonesia,grant numbers 108/E5/PG.02.00.PL/2024,027/LL6/PB/AL.04/2024,061/A.38-04/UDN-09/VI/2024.
文摘Data security has become a growing priority due to the increasing frequency of cyber-attacks,necessitating the development of more advanced encryption algorithms.This paper introduces Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps(SQQLSR),a quantum-based chaos map designed to generate one-dimensional chaotic sequences with an ultra-wide parameter range.The proposed model leverages quantum superposition using Hadamard gates and quantum rotations along the X,Y,and Z axes to enhance randomness.Extensive numerical experiments validate the effectiveness of SQQLSR.The proposed method achieves a maximum Lyapunov exponent(LE)of≈55.265,surpassing traditional chaotic maps in unpredictability.The bifurcation analysis confirms a uniform chaotic distribution,eliminating periodic windows and ensuring higher randomness.The system also generates an expanded key space exceeding 10^(40),enhancing security against brute-force attacks.Additionally,SQQLSR is applied to image encryption using a simple three-layer encryption scheme combining permutation and substitution techniques.This approach is intentionally designed to highlight the impact of SQQLSR-generated chaotic sequences rather than relying on a complex encryption algorithm.Theencryption method achieves an average entropy of 7.9994,NPCR above 99.6%,and UACI within 32.8%–33.8%,confirming its strong randomness and sensitivity to minor modifications.The robustness tests against noise,cropping,and JPEG compression demonstrate its resistance to statistical and differential attacks.Additionally,the decryption process ensures perfect image reconstruction with an infinite PSNR value,proving the algorithm’s reliability.These results highlight SQQLSR’s potential as a lightweight yet highly secure encryption mechanism suitable for quantum cryptography and secure communications.
基金The authors would like to thank the Deanship of Scientific Research,Taif University Researchers Supporting Project Number(TURSP-2020/08),Taif University,Taif,Saudi Arabia for supporting this research work.
文摘In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This introduces the challenges of presenting encryption systems that can encode videos securely and efficiently at the same time.This paper presents an efficient opto-video encryption system using Logistic Adjusted Sine map(LASM)in the Fractional Fourier Transform(FrFT).In the presented opto-video LASM-based FrFT scheme,the encoded video is split into distinct frames and transformed into optical signals utilizing an optical supply.Each of the developed optical video frames is ciphered by utilizing the LASM in optical FrFT system using two-phase modulation forms on the video frame,the first in the time-domain and the second in the FrFT domain.In the end,the ciphervideo frame is spotted utilizing a CCD digital camera and transformed into a digital structure that can be managed using a computer.We test the proposed opto-video LASM-based FrFT scheme using various security tools.The outcomes demonstrate that the presented scheme can effectively encrypt and decrypt video signals.In addition,it encrypts videos with a high level of encryption qualitywithout sacrificing its resistance to noise immunity.Finally,the test outcomes demonstrate that the presented scheme is immune to known attacks.
文摘The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.