The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization and mapping(SLAM)problem.However,existing SLAM platforms have difficulty in meeting the real-time and low-po...The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization and mapping(SLAM)problem.However,existing SLAM platforms have difficulty in meeting the real-time and low-pow-er requirements imposed by mobile systems.Though specialized hardware is promising with regard to achieving high per-formance and lowering the power,designing an efficient accelerator for SLAM is severely hindered by a wide variety of SLAM algorithms.Based on our detailed analysis of representative SLAM algorithms,we observe that SLAM algorithms advance two challenges for designing efficient hardware accelerators:the large number of computational primitives and ir-regular control flows.To address these two challenges,we propose a hardware accelerator that features composable com-putation units classified as the matrix,vector,scalar,and control units.In addition,we design a hierarchical instruction set for coping with a broad range of SLAM algorithms with irregular control flows.Experimental results show that,com-pared against an Intel x86 processor,on average,our accelerator with the area of 7.41 mm^(2) achieves 10.52x and 112.62x better performance and energy savings,respectively,across different datasets.Compared against a more energy-efficient ARM Cortex processor,our accelerator still achieves 33.03x and 62.64x better performance and energy savings,respec-tively.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.61925208,61906179,U19B2019,and U20A20227the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDB32050200+1 种基金Beijing Academy of Artificial Intelligence(BAAI),Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(YSBR-029)Youth Innovation Promotion Association CAS.
文摘The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization and mapping(SLAM)problem.However,existing SLAM platforms have difficulty in meeting the real-time and low-pow-er requirements imposed by mobile systems.Though specialized hardware is promising with regard to achieving high per-formance and lowering the power,designing an efficient accelerator for SLAM is severely hindered by a wide variety of SLAM algorithms.Based on our detailed analysis of representative SLAM algorithms,we observe that SLAM algorithms advance two challenges for designing efficient hardware accelerators:the large number of computational primitives and ir-regular control flows.To address these two challenges,we propose a hardware accelerator that features composable com-putation units classified as the matrix,vector,scalar,and control units.In addition,we design a hierarchical instruction set for coping with a broad range of SLAM algorithms with irregular control flows.Experimental results show that,com-pared against an Intel x86 processor,on average,our accelerator with the area of 7.41 mm^(2) achieves 10.52x and 112.62x better performance and energy savings,respectively,across different datasets.Compared against a more energy-efficient ARM Cortex processor,our accelerator still achieves 33.03x and 62.64x better performance and energy savings,respec-tively.