期刊文献+
共找到450,782篇文章
< 1 2 250 >
每页显示 20 50 100
Thermodynamics-based simulations of the hydration of low-heat Portland cement and the compensatory effect of magnesium oxide admixtures
1
作者 Wenwei LI Yifan ZHOU +6 位作者 Jiajie YIN Yuxiang PENG Yushan WANG Shengwen TANG Yan SHI Yang WANG Lei WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第4期305-319,共15页
Low-heat Portland(LHP)cement is a new type of Portland cement that has been widely used in recent years due to its low heat of hydration,which makes it exceptional in temperature control for mass concrete construction... Low-heat Portland(LHP)cement is a new type of Portland cement that has been widely used in recent years due to its low heat of hydration,which makes it exceptional in temperature control for mass concrete construction.However,limited studies have investigated the impact of temperature and magnesium oxide(MgO)content on LHP cement-based materials.This study utilizes thermodynamic simulations to study the hydration process,pore structure,and autogenous shrinkage of LHP cement pastes with different water-to-cement ratios(0.3,0.4,and 0.5),curing temperatures(5,15,20,and 30℃),and MgO contents(mass fractions of 2%,4%,and 5%).Higher curing temperature is found to promote the hydration reactions in cement paste.Moreover,the incorporation of 4%MgO moderately decreases both porosity and dimensional shrinkage in pastes.The microstructural evolution of different LHP pastes is examined through a comparative analysis,lending insights into LHP cement-based material applications. 展开更多
关键词 Low-heat Portland cement(LHP) SHRINKAGE Magnesium oxide expansion thermodynamic modeling HYDRATION Pore structure
原文传递
Phase field simulation for non-isothermal solidification of multicomponent alloys coupled with thermodynamics database 被引量:3
2
作者 章书周 张瑞杰 +2 位作者 曲选辉 方伟 刘明治 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2361-2367,共7页
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio... In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process. 展开更多
关键词 PHASE-FIELD multicomponent alloys COUPLING thermodynamicS non-isothermal solidification simulation
在线阅读 下载PDF
Local structure of calcium silicate melts from classical molecular dynamics simulation and a newly constructed thermodynamic model 被引量:2
3
作者 吴永全 戴辰 蒋国昌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1488-1499,共12页
The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of fiv... The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections. 展开更多
关键词 distribution of microstructural units molecular dynamic simulation strucatral thermodynamic model calcium silicate melts
在线阅读 下载PDF
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
4
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Comprehensive insights into the organic/inorganic composition separation of sewer sediment by various driving forces:Separation pathway and thermodynamic evolution
5
作者 Heliang Pang Jiangbo Ding +3 位作者 Yan Wang Jiawei Liu Qiwen Qin Jinsuo Lu 《Journal of Environmental Sciences》 2026年第1期785-796,共12页
With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving... With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving mechanism was still unclear.In this study,direct disintegration of biopolymers and indirect broken of connection point were investigated on the hydrolysis and component separation.Three typical sewer sediment treatment approaches,i.e.,alkaline,thermal and cation exchange treatments were proposed,which represented the hydrolysis-driving forces of chemical hydrolysis,physical hydrolysis and innovative cation bridging break-age.The results showed that the organic and inorganic separation rates of sewer sediment driven by alkaline,thermal and cation exchange treatments reached 21.26%,23.80%,and 19.56%-48.0%,respectively,compared to 4.43%in control.The secondary structure of proteins was disrupted,transitioning from𝛼α-helix to𝛽β-turn and random coil.Meanwhile,much biopolymers were released from solid to the liquid phase.From thermody-namic perspective,sewer sediment deposition was controlled by short-range interfacial interactions described by extended Derjaguin-Landau-Verwey-Overbeek theory.Additionally,the separation of organic and inorganic components was positively correlated with the thermodynamic parameters(Corr=0.87),highlighted the robust-ness of various driving forces.And the flocculation energy barriers were 2.40(alkaline),1.60 times(thermal),and 4.02–4.97 times(cation exchange)compared to control group.The findings revealed the contrition differ-ence of direct disintegration of gelatinous biopolymers and indirect breakage of composition connection sites in sediment composition separation,filling the critical gaps in understanding the specific mechanisms of sediment biopolymer disintegration and intermolecular connection breakage. 展开更多
关键词 Sewer sediment Component separation Directly disintegration Indirect broken thermodynamic Biopolymer
原文传递
First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics
6
作者 Yonggang Tong Kai Yang +5 位作者 Pengfei Li Yongle Hu Xiubing Liang Jian Liu Yejun Li Jingzhong Fang 《Computers, Materials & Continua》 2026年第1期353-367,共15页
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu... (NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials. 展开更多
关键词 High entropy ceramics mechanical properties electronic properties thermodynamic properties
在线阅读 下载PDF
Coordination Thermodynamic Control of Magnetic Domain Configuration Evolution toward Low‑Frequency Electromagnetic Attenuation
7
作者 Tong Huang Dan Wang +9 位作者 Xue He Zhaobo Feng Zhiqiang Xiong Yuqi Luo Yuhui Peng Guangsheng Luo Xuliang Nie Mingyue Yuan Chongbo Liu Renchao Che 《Nano-Micro Letters》 2026年第3期860-875,共16页
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at... The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials. 展开更多
关键词 thermodynamically controlled coordination strategy Magnetic domain configuration Low-frequency electromagnetic wave absorption Electrical/magnetic coupling MULTIFUNCTION
在线阅读 下载PDF
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
8
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Bridging the gap:A scoping review of wet and dry lab simulation training in orthopaedic surgical education
9
作者 Sari Wathiq Al Hajaj Chandramohan Ravichandran +4 位作者 Karthic Swaminathan Sanjeevi Bharadwaj Vishnu V Nair Hussein Shoukry Sriram Srinivasan 《World Journal of Orthopedics》 2026年第1期132-139,共8页
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints... BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care. 展开更多
关键词 Orthopaedic education Wet lab Dry lab simulation training Virtual reality Surgical procedure
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
10
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Automatic gating and riser system design and defect control for K4169 superalloy guide blade casting based on parametric 3D modeling-simulation integrated system
11
作者 Le-chuan Li Ya-jun Yin +4 位作者 Bing-zheng Fan Guo-yan Shui Xiao-yuan Ji Jian-xin Zhou Lei Jin 《China Foundry》 2026年第1期20-30,共11页
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si... Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%. 展开更多
关键词 numerical simulation automatic design investment casting parametric 3D modeling gating and riser system
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
12
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
13
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
14
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Simulation modeling and experimental analysis of thermodynamic charge performance in a variable-mass thermodynamic system 被引量:1
15
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2013年第10期2753-2762,共10页
The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and ... The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users. 展开更多
关键词 variable-mass thermodynamic system steam ACCUMULATOR thermal MIXING simulation
在线阅读 下载PDF
Thermodynamic analysis and simulation for gas baffle entrance collimator of EAST-NBI system based on thermo-fluid coupled method 被引量:5
16
作者 Ling Tao Chun-Dong Hu Yuan-Lai Xie 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第1期90-95,共6页
The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the bea... The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system. 展开更多
关键词 Neutral BEAM injection High-heat-flux component BEAM COLLIMATOR Thermo-fluid coupled method thermodynamic analysis
在线阅读 下载PDF
Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina–chromia refractory 被引量:1
17
作者 Shi-xian Zhao Bin-li Cai +3 位作者 Hong-gang Sun Gang Wang Hong-xia Li Xiao-yan Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1458-1465,共8页
The corrosion behavior of alumina-chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550℃ was investigated via thermodynamic simulations. In the proposed simulation mode... The corrosion behavior of alumina-chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550℃ was investigated via thermodynamic simulations. In the proposed simulation model, the initial slag first attacks the matrix and surface aggregates and subsequently attacks the inner aggregates. The simulation results indicate that the slag chemistry strongly affects the phase formation and corrosion behavior of the refractory brick. Greater amounts of alumina were dissolved and spinel solid phases formed when the brick interacted with iron smelting slag. These phenomena, as well as the calculated lower viscosity, may lead to much deeper penetration than that exhibited by coal slag and to more severe corrosion compared to that induced by coal slag. The thermodynamic calculations well match the experimental observations, demonstrating the efficiency of the proposed simulation model for evaluating the corrosion behavior of alumina-chromia refractory. 展开更多
关键词 thermodynamic analysis simulation corrosion SPINEL ALUMINA CHROMIA REFRACTORIES
在线阅读 下载PDF
Simulation of Thermodynamics and Kinetics for KR Desulphurization 被引量:4
18
作者 XU An-jun1, ZHANG Mao-lin2, ZHANG Hui-ning1, LI An-dong3 (1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083,China 2. Steel-Making and Continuous Casting Engineering Institute, Capital Engineering and Research Incorporation Limited, Beijing 100176,China 3. Stainless Steel Company, Baosteel Group, Shanghai 201900,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期98-106,共9页
This paper seeks to optimize parameters, reduce the cost of desulphurization and the consumption of operation about KR pretreatment of hot metal at the Stainless Steel Company, Baosteel Group. Based on the theoretical... This paper seeks to optimize parameters, reduce the cost of desulphurization and the consumption of operation about KR pretreatment of hot metal at the Stainless Steel Company, Baosteel Group. Based on the theoretical analysis of physical chemistry in metallurgy, simulation experiments of the KR desulphurization of hot metal were conducted in a laboratory and the composition of the desulphurization was optimized, by means of chemical analysis, DSC, SEM and EDS. The water modeling displays the fluid flow characteristics of KR desulphurization. Combination of the techniques and production at the Stainless Steel Company, Baosteel Group, the optimized parameters of the process are put forward. 展开更多
关键词 desulphurization of hot metal KR desulphurization thermodynamicS water model
原文传递
Design and Numerical Simulation of an Arctic Ocean Circulation and Thermodynamic Sea-Ice Model 被引量:4
19
作者 宇如聪 金向泽 张学洪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第3期289-310,共22页
In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presentedby the authors based on the framework of a twenty-layer World Oceanic general circulation model developed ... In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presentedby the authors based on the framework of a twenty-layer World Oceanic general circulation model developed byZhang et al. in 1994. The model's domain covers the Arctic Ocean and Greenland-Norwegian Seas with the horizontal resolution of 200 km×200 km on a stereographic projection plane. In vertical, the model uses the Eta-coordinate(Sigma modified to have quasi-horizontal coordinate surfaces) and has ten unevenly-spaced layers to cover the deepest water column of 3000 m. Two 150-year integrations of coupling the ocean circulation model with the sea-icemodel have been performed with seasonally cyclic surface boundary conditions. The only difference between the tWoexperiments is in the model's geography. Some preliminary analyses of the experimental results have been done focused on the following aspects: (1) surface layer temperature, salinity and current; (2) the' Atlantic Layer'; (3)sea-ice cover and its seasonal variation. In comparison with the available observational data, these results are acceptable with reasonable accuracy. 展开更多
关键词 Arctic Ocean thermodynamic sea-ice model Ocean circulation model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部