With the rapid development of Internet technology,the application of electronic circuit simulation technology is more and more extensive,and now it has been applied to integrated circuit design.Because the electronic ...With the rapid development of Internet technology,the application of electronic circuit simulation technology is more and more extensive,and now it has been applied to integrated circuit design.Because the electronic circuit simulation technology has high efficiency,flexible and simple application,as well as stable performance,it has shown more and more good application prospects in integrated circuit design.Based on the strong development trend of electronic circuit simulation technology,it will be more and more widely used in daily life in the future,so the research on electronic circuit simulation technology is more and more in-depth.In this paper,the application of electronic circuit technology in integrated circuit design is studied,hoping that the technology can provide a more concise and efficient research and development way for electronic applications.展开更多
Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being in...Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.展开更多
This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co...This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.展开更多
Virtual simulation technology is the integration of virtual reality technology and augmented reality technology, with intuitionistic, practical and experiential, it can fully meet the needs of different scenes and ope...Virtual simulation technology is the integration of virtual reality technology and augmented reality technology, with intuitionistic, practical and experiential, it can fully meet the needs of different scenes and operation needs of interior design course teaching, and provide students with a full sense of immersion, independent operation and exploration of open space. The fundamental purpose of this study on the application of virtual simulation technology in interior design course teaching is to promote the modernization of interior design course teaching and improve the efficiency of teaching. This paper briefly expounds the concept of virtual simulation technology and interior design course, analyzes the limitations and shortcomings of interior design course teaching and implementation, and discusses the advantages of its application in interior design course from the technical point of view. Finally, the paper puts forward three application steps of virtual simulation technology in interior design course teaching and puts forward the implementation strategy of applying technology to carry out teaching based on the perspective of students, in order to provide valuable reference for the modernization of interior design course teaching.展开更多
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor...Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.展开更多
This paper mainly analyzes industrial simulation technology and its development, and briefly analyzes the teaching status of automation control major, which mainly shows that students lack initiative in learning, abst...This paper mainly analyzes industrial simulation technology and its development, and briefly analyzes the teaching status of automation control major, which mainly shows that students lack initiative in learning, abstract concept knowledge and intuitive teaching content. At the same time, the importance of industrial simulation technology applied in automation control major is expounded, which proves that simulation technology can improve classroom atmosphere, provide intuitive teaching content for students and enhance students learning interest. Based on this, the author makes the following reflections on the application of industrial simulation technology in the teaching of automation control specialty.展开更多
Based on the teaching characteristics in military academies,simulation technology has been applied in their teaching methods.The issues faced in the application of virtual simulation technology to relevant professiona...Based on the teaching characteristics in military academies,simulation technology has been applied in their teaching methods.The issues faced in the application of virtual simulation technology to relevant professional teaching in armed police academies are analyzed in this article.Secondly,in view of the difficulties encountered in the organization and implementation of practical teaching as well as in the development of the current teaching,this article explores the impact of simulation technology in its application in teaching methods,training practices,and teaching channels.展开更多
Machinery manufacturing industry is a traditional industry, the application of simulation technology in the industry can improve work efficiency, reduce manufacturing costs and promote the industry information, intell...Machinery manufacturing industry is a traditional industry, the application of simulation technology in the industry can improve work efficiency, reduce manufacturing costs and promote the industry information, intelligent, so that it towards the direction of modernization. Therefore, in the process of the rapid development of Chinese society, the development of the machinery industry is very important, and people's daily production and life have a very close relationship. This paper takes Unity3D, VR and other technologies as examples, so as to study the construction of mechanical design virtual simulation system.展开更多
We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use...We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use the advantages of BIM+virtual simulation technology,design a scientific and reasonable practical teaching content of Road Engineering Construction Technology and Organization,and address the contrast between the strong practical aspect of the traditional Road Engineering Construction Technology and Organization course and the lack of practical instruments in hope to improve students’learning autonomy,enhance the quality of practical teaching,achieve the training objectives of the course,and nurture applied technical talents.展开更多
Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation ...Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.展开更多
The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with th...The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.展开更多
In the university physics teaching, the application of virtual simulation experiment technology can provide reliable technical support for teachers. If teachers only use the traditional oral teaching method, the teach...In the university physics teaching, the application of virtual simulation experiment technology can provide reliable technical support for teachers. If teachers only use the traditional oral teaching method, the teaching effect is not ideal. Because the physics subject contains many experiments, if students cannot watch the experiment process, students thinking ability and practical ability will be affected. However, under the constraints of teaching conditions, some physics experiments cannot be carried out. With the help of virtual simulation experiment technology, under the virtual simulation experiment, the simulation degree is high and the operation is relatively simple, also has the advantage of safety and risk-free, to compensate for the deficiency of the traditional teaching methods. To a certain extent, also can innovate teaching methods, students can fully observe the physical phenomenon operation process, help students to master the corresponding knowledge. This paper expounds the characteristics of virtual simulation experiment and the application principles of virtual simulation technology in university physics experiment teaching, and proposes the application strategy of this technology.展开更多
As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideolo...As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.展开更多
To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simula...To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.展开更多
A variety of methods based on air quality models,including tracer methods,the bruteforce method(BFM),decoupled direct method(DDM),high-order decoupled direct method(HDDM),response surface models(RSMs)and so on forth,h...A variety of methods based on air quality models,including tracer methods,the bruteforce method(BFM),decoupled direct method(DDM),high-order decoupled direct method(HDDM),response surface models(RSMs)and so on forth,have been widely used to study the transport of air pollutants.These methods have good applicability for the transport of air pollutants with simple formation mechanisms.However,differences in research conclusions on secondary pollutants with obvious nonlinear characteristics have been reported.For example,the tracer method is suitable for the study of simpli?ed scenarios,while HDDM and RSMs are more suitable for the study for nonlinear pollutants.Multiple observation techniques,including conventional air pollutant observation,lidar observation,air sounding balloons,vehicle-mounted and ship-borne technology,aerial surveys,and remote sensing observations,have been utilized to investigate air pollutant transport characteristics with time resolution as high as 1 sec.In addition,based on a multi-regional input-output model combined with emission inventories,the transfer of air pollutant emissions can be evaluated and applied to study the air pollutant transport characteristics.Observational technologies have advantages in temporal resolution and accuracy,while modeling technologies are more?exible in spatial resolution and research plan setting.In order to accurately quantify the transport characteristics of pollutants,it is necessary to develop a research method for interactive veri?cation of observation and simulation.Quantitative evaluation of the transport of air pollutants from different angles can provide a scienti?c basis for regional joint prevention and control.展开更多
For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock disp...For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
In the wake of the era of big data,the techniques of deep learning have become an essential research direction in the machine learning field and are beginning to be applied in the steel industry.The sintering process ...In the wake of the era of big data,the techniques of deep learning have become an essential research direction in the machine learning field and are beginning to be applied in the steel industry.The sintering process is an extremely complex industrial scene.As the main process of the blast furnace ironmaking industry,it has great economic value and environmental protection significance for iron and steel enterprises.It is also one of the fields where deep learning is still in the exploration stage.In order to explore the application prospects of deep learning techniques in iron ore sintering,a comprehensive summary and conclusion of deep learning models for intelligent sintering were presented after reviewing the sintering process and deep learning models in a large number of research literatures.Firstly,the mechanisms and characteristics of parameters in sintering processes were introduced and analysed in detail,and then,the development of iron ore sintering simulation techniques was introduced.Secondly,deep learning techniques were introduced,including commonly used models of deep learning and their applications.Thirdly,the current status of applications of various types of deep learning models in sintering processes was elaborated in detail from the aspects of prediction,controlling,and optimisation of key parameters.Generally speaking,deep learning models that could be more effectively implemented in more situations of the sintering and even steel industry chain will promote the intelligent development of the metallurgical industry.展开更多
This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted pat...This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted patch.Computer Simulation Technology(CST)is used to assess and investigate the performance of this antenna.With a band notch,this antenna can prevent interference from Wireless Local Area Network(WLAN)(5.15–5.825 GHz)and Worldwide Interoperability for Microwave Access(WiMAX)(5.25–5.85 GHz)systems.At first,the performance parameters like return loss response,gain,radiation patterns,and radiation efficiency of this UWB antenna are evaluated.After that,the human body effects on the antenna performance of the antenna are also examined to place the antenna at various distances away from 3-layers of phantom body model at different frequencies.All the on-body performance parameter results are compared and analyzed with free space performance parameter results.Lastly,by changing patch slot length and ground plane length,parametric studies were done for performance comparison.According to this research,it is noticed that the antenna is tiny and new.It shows good performance in body case as well.Hence,the antenna is very suitable for healthcare applications.展开更多
The COarc welding was carried out under a longitudinal magnetic field,and the arc shape has been studied by using a high-speed camera.From the camera images,we know that under the action of the longitudinal magnetic f...The COarc welding was carried out under a longitudinal magnetic field,and the arc shape has been studied by using a high-speed camera.From the camera images,we know that under the action of the longitudinal magnetic field,the upper end of the arc will constrict and the lower end of the arc will expand.It would become a bell-type shape and rotate at a highspeed in the optimum range of magnetic field parameters.The arc shape was simulated using a mathematical model,which was established based on experiment data and theoretical knowledge,and mechanism analysis has been carried out regarding the effect of longitudinal magnetic field on COwelding arcs.展开更多
文摘With the rapid development of Internet technology,the application of electronic circuit simulation technology is more and more extensive,and now it has been applied to integrated circuit design.Because the electronic circuit simulation technology has high efficiency,flexible and simple application,as well as stable performance,it has shown more and more good application prospects in integrated circuit design.Based on the strong development trend of electronic circuit simulation technology,it will be more and more widely used in daily life in the future,so the research on electronic circuit simulation technology is more and more in-depth.In this paper,the application of electronic circuit technology in integrated circuit design is studied,hoping that the technology can provide a more concise and efficient research and development way for electronic applications.
文摘Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.
基金Science and Technology Key Project of Beijing Polytechnic(Project number:2024X008-KXZ)。
文摘This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.
基金funded by Provincial Teaching Reform and Innovation Project:Shanxi University Teaching Reform Innovation Project,Project No.J20230051.Education Department of Shanxi Province 2023.7.
文摘Virtual simulation technology is the integration of virtual reality technology and augmented reality technology, with intuitionistic, practical and experiential, it can fully meet the needs of different scenes and operation needs of interior design course teaching, and provide students with a full sense of immersion, independent operation and exploration of open space. The fundamental purpose of this study on the application of virtual simulation technology in interior design course teaching is to promote the modernization of interior design course teaching and improve the efficiency of teaching. This paper briefly expounds the concept of virtual simulation technology and interior design course, analyzes the limitations and shortcomings of interior design course teaching and implementation, and discusses the advantages of its application in interior design course from the technical point of view. Finally, the paper puts forward three application steps of virtual simulation technology in interior design course teaching and puts forward the implementation strategy of applying technology to carry out teaching based on the perspective of students, in order to provide valuable reference for the modernization of interior design course teaching.
文摘Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.
文摘This paper mainly analyzes industrial simulation technology and its development, and briefly analyzes the teaching status of automation control major, which mainly shows that students lack initiative in learning, abstract concept knowledge and intuitive teaching content. At the same time, the importance of industrial simulation technology applied in automation control major is expounded, which proves that simulation technology can improve classroom atmosphere, provide intuitive teaching content for students and enhance students learning interest. Based on this, the author makes the following reflections on the application of industrial simulation technology in the teaching of automation control specialty.
文摘Based on the teaching characteristics in military academies,simulation technology has been applied in their teaching methods.The issues faced in the application of virtual simulation technology to relevant professional teaching in armed police academies are analyzed in this article.Secondly,in view of the difficulties encountered in the organization and implementation of practical teaching as well as in the development of the current teaching,this article explores the impact of simulation technology in its application in teaching methods,training practices,and teaching channels.
文摘Machinery manufacturing industry is a traditional industry, the application of simulation technology in the industry can improve work efficiency, reduce manufacturing costs and promote the industry information, intelligent, so that it towards the direction of modernization. Therefore, in the process of the rapid development of Chinese society, the development of the machinery industry is very important, and people's daily production and life have a very close relationship. This paper takes Unity3D, VR and other technologies as examples, so as to study the construction of mechanical design virtual simulation system.
基金the Chongqing Engineering College Educational Teaching Reform Research Project“Practical Teaching Research of Road Engineering Construction Technology and Organization Course Based on BIM+Virtual Simulation Technology”(Project No.JY2021310).
文摘We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use the advantages of BIM+virtual simulation technology,design a scientific and reasonable practical teaching content of Road Engineering Construction Technology and Organization,and address the contrast between the strong practical aspect of the traditional Road Engineering Construction Technology and Organization course and the lack of practical instruments in hope to improve students’learning autonomy,enhance the quality of practical teaching,achieve the training objectives of the course,and nurture applied technical talents.
基金supported by the National Natural Science Foundation of China (Nos.52374064,51974347,52474072)the Shandong Provincial Universities Youth Innovation and Technology Support Program (2022KJ065)。
文摘Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.
基金2021 Chongqing Energy Vocational College Science and Technology Department Teaching Reform Project"Discussion and Practice of Teaching Reform of"Bridge and Culvert Engineering Construction Technology"Based on Road and Bridge Simulation Software"(202106)。
文摘The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.
文摘In the university physics teaching, the application of virtual simulation experiment technology can provide reliable technical support for teachers. If teachers only use the traditional oral teaching method, the teaching effect is not ideal. Because the physics subject contains many experiments, if students cannot watch the experiment process, students thinking ability and practical ability will be affected. However, under the constraints of teaching conditions, some physics experiments cannot be carried out. With the help of virtual simulation experiment technology, under the virtual simulation experiment, the simulation degree is high and the operation is relatively simple, also has the advantage of safety and risk-free, to compensate for the deficiency of the traditional teaching methods. To a certain extent, also can innovate teaching methods, students can fully observe the physical phenomenon operation process, help students to master the corresponding knowledge. This paper expounds the characteristics of virtual simulation experiment and the application principles of virtual simulation technology in university physics experiment teaching, and proposes the application strategy of this technology.
基金This paper was supported by the 2021 School-Level Education Reform Project of Hainan Tropical Ocean University Fund(RHYjg2021sz03).
文摘As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.
基金Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation(No.L211024),the National Natural Science Foundation of China(No.52072012).
文摘To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.
基金supported by the National Key R&D Program of China(No.2018YFC0213200)。
文摘A variety of methods based on air quality models,including tracer methods,the bruteforce method(BFM),decoupled direct method(DDM),high-order decoupled direct method(HDDM),response surface models(RSMs)and so on forth,have been widely used to study the transport of air pollutants.These methods have good applicability for the transport of air pollutants with simple formation mechanisms.However,differences in research conclusions on secondary pollutants with obvious nonlinear characteristics have been reported.For example,the tracer method is suitable for the study of simpli?ed scenarios,while HDDM and RSMs are more suitable for the study for nonlinear pollutants.Multiple observation techniques,including conventional air pollutant observation,lidar observation,air sounding balloons,vehicle-mounted and ship-borne technology,aerial surveys,and remote sensing observations,have been utilized to investigate air pollutant transport characteristics with time resolution as high as 1 sec.In addition,based on a multi-regional input-output model combined with emission inventories,the transfer of air pollutant emissions can be evaluated and applied to study the air pollutant transport characteristics.Observational technologies have advantages in temporal resolution and accuracy,while modeling technologies are more?exible in spatial resolution and research plan setting.In order to accurately quantify the transport characteristics of pollutants,it is necessary to develop a research method for interactive veri?cation of observation and simulation.Quantitative evaluation of the transport of air pollutants from different angles can provide a scienti?c basis for regional joint prevention and control.
基金Financial support for this work, provided by the Major Program of the National Natural Science Foundation of China (Nos. 51174196 and 51204168)the Program for New Century Excellent Talents in University by Ministry of Education of China (No. NCET-07-0519)
文摘For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金supported by the Department of Education of Hebei Province,China(QN2019026).
文摘In the wake of the era of big data,the techniques of deep learning have become an essential research direction in the machine learning field and are beginning to be applied in the steel industry.The sintering process is an extremely complex industrial scene.As the main process of the blast furnace ironmaking industry,it has great economic value and environmental protection significance for iron and steel enterprises.It is also one of the fields where deep learning is still in the exploration stage.In order to explore the application prospects of deep learning techniques in iron ore sintering,a comprehensive summary and conclusion of deep learning models for intelligent sintering were presented after reviewing the sintering process and deep learning models in a large number of research literatures.Firstly,the mechanisms and characteristics of parameters in sintering processes were introduced and analysed in detail,and then,the development of iron ore sintering simulation techniques was introduced.Secondly,deep learning techniques were introduced,including commonly used models of deep learning and their applications.Thirdly,the current status of applications of various types of deep learning models in sintering processes was elaborated in detail from the aspects of prediction,controlling,and optimisation of key parameters.Generally speaking,deep learning models that could be more effectively implemented in more situations of the sintering and even steel industry chain will promote the intelligent development of the metallurgical industry.
基金Taif University Researchers are supporting project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted patch.Computer Simulation Technology(CST)is used to assess and investigate the performance of this antenna.With a band notch,this antenna can prevent interference from Wireless Local Area Network(WLAN)(5.15–5.825 GHz)and Worldwide Interoperability for Microwave Access(WiMAX)(5.25–5.85 GHz)systems.At first,the performance parameters like return loss response,gain,radiation patterns,and radiation efficiency of this UWB antenna are evaluated.After that,the human body effects on the antenna performance of the antenna are also examined to place the antenna at various distances away from 3-layers of phantom body model at different frequencies.All the on-body performance parameter results are compared and analyzed with free space performance parameter results.Lastly,by changing patch slot length and ground plane length,parametric studies were done for performance comparison.According to this research,it is noticed that the antenna is tiny and new.It shows good performance in body case as well.Hence,the antenna is very suitable for healthcare applications.
基金supported by National Natural Science Foundation of China(No.51275314)the Program of Science and Technology Foundation of Shenyang,China(F13-316-1-04)
文摘The COarc welding was carried out under a longitudinal magnetic field,and the arc shape has been studied by using a high-speed camera.From the camera images,we know that under the action of the longitudinal magnetic field,the upper end of the arc will constrict and the lower end of the arc will expand.It would become a bell-type shape and rotate at a highspeed in the optimum range of magnetic field parameters.The arc shape was simulated using a mathematical model,which was established based on experiment data and theoretical knowledge,and mechanism analysis has been carried out regarding the effect of longitudinal magnetic field on COwelding arcs.