期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Enhanced Oil-Water Separation in a Three-Stage Double-Stirring Extraction Tank 被引量:3
1
作者 Lü Chao Zhang Zimu +3 位作者 Zhao Qiuyue Wang Shuchan Zhang Ting'an Liu Yan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期121-126,共6页
Numerical simulation of enhanced fluid flow characteristics in a three-stage double-stirring extraction tank was conducted with the coupling of an Eulerian multiphase flow model and a Morsi-Alexander interphase drag f... Numerical simulation of enhanced fluid flow characteristics in a three-stage double-stirring extraction tank was conducted with the coupling of an Eulerian multiphase flow model and a Morsi-Alexander interphase drag force model. Results show that the addition of a stirring device into the settler can efficiently reduce the volume fraction of out-of-phase impurity in the outlet, and accelerate the settling separation of oil-water mixture. Such addition can also effectively break down the oil-water-wrapped liquid droplets coming from the mixer, inhibit reflux from the outlet, and improve the oil-water separation. The addition of a stirring device induces ignorable power consumption compared with that by the mixer, and can thus facilitate the commercialized promotion of this novel equipment. 展开更多
关键词 three-stage extraction tank double-stirring numerical simulation flow characteristics power
在线阅读 下载PDF
Numerical simulation of stirred tanks using a hybrid immersed-boundary method 被引量:2
2
作者 Shengbin Di Ji Xu +1 位作者 Qi Chang Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1122-1134,共13页
Conventionally, multiple reference frame(MRF) method and sliding mesh(SM) method are used in the simulation of stirred tanks, however, both methods have limitations. In this study, a hybrid immersed-boundary(IB)techni... Conventionally, multiple reference frame(MRF) method and sliding mesh(SM) method are used in the simulation of stirred tanks, however, both methods have limitations. In this study, a hybrid immersed-boundary(IB)technique is developed in a finite difference context for the numerical simulation of stirred tanks. IBs based on Lagrangian markers and solid volume fractions are used for moving and stationary boundaries, respectively, to achieve optimal efficiency and accuracy. To cope with the high computational cost in the simulation of stirred tanks, the technique is implemented on computers with hybrid architecture where central processing units(CPUs) and graphics processing units(GPUs) are used together. The accuracy and efficiency of the present technique are first demonstrated in a relatively simple case, and then the technique is applied to the simulation of turbulent flow in a Rushton stirred tank with large eddy simulation(LES). Finally the proposed methodology is coupled with discrete element method(DEM) to accomplish particle-resolved simulation of solid suspensions in small stirred tanks. It demonstrates that the proposed methodology is a promising tool in simulating turbulent flow in stirred tanks with complex geometries. 展开更多
关键词 Immersed-boundary method CPU–GPU hybrid computing Stirred tank Large eddy simulation
在线阅读 下载PDF
CFD simulation of particle suspension in a stirred tank 被引量:22
3
作者 Nana Qi Hu Zhang +2 位作者 Kai Zhang Gang Xu Yongping Yang 《Particuology》 SCIE EI CAS CSCD 2013年第3期317-326,共10页
Particle suspension characteristics are predicted computationally in a stirred tank driven by a Smith turbine. In order to verify the hydrodynamic model and numerical method, the predicted power number and flow patter... Particle suspension characteristics are predicted computationally in a stirred tank driven by a Smith turbine. In order to verify the hydrodynamic model and numerical method, the predicted power number and flow pattern are compared with designed values and simulated results from the literature, respectively. The effects of particle density, particle diameter, liquid viscosity and initial solid loading on particle suspension behavior are investigated by using the Eulerian-Eulerian two-fluid model and the standard k-ε turbulence model. The results indicate that solid concentration distribution depends on the flow field in the stirred tank. Higher particle density or larger particle size results in less homogenous distribution of solid particles in the tank. Increasing initial solid loading has an adverse impact on the homogeneous suspension of solid particles in a low-viscosity liquid, whilst more uniform particle distribution is found in a high-viscosity liquid. 展开更多
关键词 Stirred tank Smith turbine Particle suspension CFD simulation
原文传递
CFD simulation of solid-liquid stirred tanks for low to dense solid loading systems 被引量:15
4
作者 Divyamaan Wadnerkar Moses O. Tade +1 位作者 Vishnu K. Pareek Ranjeet P. Utikar 《Particuology》 SCIE EI CAS CSCD 2016年第6期16-33,共18页
The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing t... The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing to particle-particle and particle-wall interactions which are generally neglected at low concentra- tions. Most models do not consider such interactions and deviate significantly from experimental data. Furthermore, drag force, turbulence and turbulent dispersion play a crucial role and need to be precisely known in predicting local hydrodynamics. Therefore, critical factors such as the modelling approach, drag, dispersion, coefficient of restitution and turbulence are examined and discussed exhaustively in this paper. The Euler-Euler approach with kinetic theory of granular flow, Syamlal-O'Brien drag model and Reynolds stress turbulence model provide realistic predictions for such systems. The contribution of the turbulent dispersion force in improving the prediction is marginal but cannot be neglected at low solids volume fractions. Inferences drawn from the study and the finalised models will be instrumen- tal in accurately simulating the solids suspension in stirred tanks for a wide range of conditions. These models can be used in simulations to obtain precise results needed for an in-depth understanding of hydrodynamics in stirred tanks. 展开更多
关键词 Solid-liquid stirred tanks Computational fluid dynamics simulation approach Drag model Turbulence model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部