Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fa...Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
Catalytic amine-solvent regeneration has been validated as an energy-saving strategy for CO_(2) chemisorption by boosting reaction kinetics under mild conditions.The upscale performance evaluation and longterm durabil...Catalytic amine-solvent regeneration has been validated as an energy-saving strategy for CO_(2) chemisorption by boosting reaction kinetics under mild conditions.The upscale performance evaluation and longterm durability are indispensable steps for industrial application but have been scarcely reported thus far.Here,we report a ZrO_(2)/Al_(2)O_(3) pack catalyst that possesses strong metal oxide-support interactions,a porous structure,active and stable Zr-O-Al coordination,promoted proton transfer and a 40.7% decrease in the energy activation of carbamate decomposition,which significantly accelerates CO_(2) desorption kinetics.The upscale experiment and cost evaluation based on industrial flue gas revealed that the use of packing catalysts can reduce energy consumption by 27.56% and optimize the overall cost by 10.49%.The active sites present excellent stability in alkaline solvents.This work is the first to investigate the ability of high-technology readiness(technology readiness level at 6(TRL 6))for catalytic aminesolvent regeneration,providing valuable insights for potential applications involving efficient CO_(2) capture with catalyst assistance.展开更多
Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H fil...Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H films were investi- gated by atomic force microscopy. According to the scaling theory, the growth exponent β≈0.67, the roughness exponent α≈0.80,and the dynamic exponent 1/z = 0.40 are obtained. These scaling exponents cannot be explained well by the known growth models. An attempt at Monte Carlo simulation has been made to describe the growth process of μc-Si: H film using a particle reemission model where the incident flux distribution,the type and concentration of growth radical, and sticking,reemission,shadowing mechanisms all contributed to the growing morphology.展开更多
The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec...To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.展开更多
To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p...To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.展开更多
With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduce...With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.展开更多
This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of...This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of methanol on an activated carbon at the molecular level. The adsorption isotherms obtained in the linear region (or adsorption constant) are exploited as a model parameter required for the adsorption process simulation. The adsorption process model described by a set of partial differential equations (PDEs) is solved by using the conservation element and solution element method, which produces a fast and an accurate numerical solution to PDEs. The simulation results obtained from the adsorption constant estimated at the molecular level are in good agreement with the experimental results of the pulse response. The systematical multiscale simulation approach addressed in this study may be useful to accelerate the adsorption process development by reducing the number of experiments.展开更多
As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experime...As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.展开更多
Coal-conversion technologies,although used ubiquitously,are often discredited due to high pollutant emissions,thereby emphasizing a dire need to optimize the combustion process.The co-fring of coal/biomass in a fuidiz...Coal-conversion technologies,although used ubiquitously,are often discredited due to high pollutant emissions,thereby emphasizing a dire need to optimize the combustion process.The co-fring of coal/biomass in a fuidized bed reactor has been an efcient way to optimize the pollutants emission.Herein,a new model has been designed in Aspen Plus®to simultaneously include detailed reaction kinetics,volatile compositions,tar combustion,and hydrodynamics of the reactor.Validation of the process model was done with variations in the fuel including high-sulfur Spanish lignite,high-ash Ekibastuz coal,wood pellets,and locally collected municipal solid waste(MSW)and the temperature ranging from 1073 to 1223 K.The composition of the exhaust gases,namely,CO/CO_(2)/NO/SO_(2)were determined from the model to be within 2%of the experimental observations.Co-combustion of local MSW with Ekibastuz coal had fue gas composition ranging from 1000 to 5000 ppm of CO,16.2%–17.2%of CO_(2),200–550 ppm of NO,and 130–210 ppm of SO_(2).A sensitivity analysis on co-fring of local biomass and Ekibastuz coal demonstrated the optimal operating temperature for fuidized bed reactor at 1148 K with the recommended biomass-to-coal ratio is 1/4,leading to minimum emissions of CO,NO,and SO_(2).展开更多
Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformabl...Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.展开更多
Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include...Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.展开更多
A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the u...A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the ultimate equilibrium method. Based on the results of finite element analysis, the stress contour graphs and displacement vector graphs at different construction steps were obtained, and the behavior of the slope during stabilization construction process was analyzed quantitatively. Based on the analysis of safety factors of three different schemes of stabilization and two different construction schemes, the assessment of stability and bracing design of the construction process were performed. The results show that the original reinforcement design is improper; the stability of the rock slope is controlled by a developed structural plane, the stability factor after excavation is less than 1, and the free surface should be braced in time; for stability, the construction sequence should adopt that bracing follows excavation step by step up to down; the local slide occurred during the construction process agrees with the dangerous slide determined by the numerical analysis, which proves the validity and rationality of the adopted method.展开更多
Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a ...Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a machine learning approach is established,so as to improve the prediction accuracy and range of IL melting points.Based on IL melting points data with 600 training data and 168 testing data,the estimated average absolute relative deviations(AARD)and squared correlation coefficients(R^(2))are 3.11%,0.8820 and 5.12%,0.8542 for the training set and testing set of the SVM model,respectively.Then,through the melting points model and other rational design processes including conductor-like screening model for real solvents(COSMO-RS)calculation and physical property constraints,cyano-based ILs are obtained,in which tetracyanoborate[TCB]-is often ruled out due to incorrect estimation of melting points model in the literature.Subsequently,by means of process simulation using Aspen Plus,optimal IL are compared with excellent IL reported in the literature.Finally,1-ethyl-3-methylimidazolium tricyanomethanide[EMIM][TCM]is selected as a most suitable solvent for CO_(2)separation from flue gas,the process of which leads to 12.9%savings on total annualized cost compared to that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[EMIM][Tf_(2)N].展开更多
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy cons...A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process.展开更多
文摘Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.
基金supported by the National Natural Science Foundation of China(52300134 and 22106084)the China Postdoctoral Science Foundation(2022TQ0175,2023M741931,and 2022T150350).
文摘Catalytic amine-solvent regeneration has been validated as an energy-saving strategy for CO_(2) chemisorption by boosting reaction kinetics under mild conditions.The upscale performance evaluation and longterm durability are indispensable steps for industrial application but have been scarcely reported thus far.Here,we report a ZrO_(2)/Al_(2)O_(3) pack catalyst that possesses strong metal oxide-support interactions,a porous structure,active and stable Zr-O-Al coordination,promoted proton transfer and a 40.7% decrease in the energy activation of carbamate decomposition,which significantly accelerates CO_(2) desorption kinetics.The upscale experiment and cost evaluation based on industrial flue gas revealed that the use of packing catalysts can reduce energy consumption by 27.56% and optimize the overall cost by 10.49%.The active sites present excellent stability in alkaline solvents.This work is the first to investigate the ability of high-technology readiness(technology readiness level at 6(TRL 6))for catalytic aminesolvent regeneration,providing valuable insights for potential applications involving efficient CO_(2) capture with catalyst assistance.
文摘Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H films were investi- gated by atomic force microscopy. According to the scaling theory, the growth exponent β≈0.67, the roughness exponent α≈0.80,and the dynamic exponent 1/z = 0.40 are obtained. These scaling exponents cannot be explained well by the known growth models. An attempt at Monte Carlo simulation has been made to describe the growth process of μc-Si: H film using a particle reemission model where the incident flux distribution,the type and concentration of growth radical, and sticking,reemission,shadowing mechanisms all contributed to the growing morphology.
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
文摘To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.
基金financially supported by the National Natural Science Foundation of China(Grant No.51774307,52074331,42002182)partially supported by Major Special Projects of CNPC,China(ZD2019-184)。
文摘To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.
基金supported by The National High Technology Research and Development Program of China (2009AA044701)
文摘With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.
基金the Basic Research Program of the Korea Science & Engineering Foundation (KoSEF, No. R01-2006-000-10786-0).
文摘This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of methanol on an activated carbon at the molecular level. The adsorption isotherms obtained in the linear region (or adsorption constant) are exploited as a model parameter required for the adsorption process simulation. The adsorption process model described by a set of partial differential equations (PDEs) is solved by using the conservation element and solution element method, which produces a fast and an accurate numerical solution to PDEs. The simulation results obtained from the adsorption constant estimated at the molecular level are in good agreement with the experimental results of the pulse response. The systematical multiscale simulation approach addressed in this study may be useful to accelerate the adsorption process development by reducing the number of experiments.
基金Supported by the National Technology Support Program of China(2006BAE02B02)the National Basic Research Program of China (2005CB221205)
文摘As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.
基金support provided by Nazarbayev University under the project number 110119FD4535(Project name:Co-fring of coal and biomass under air and oxy-fuel environment in fuidized bed rig:Experiments with process model development)11022021FD2905(Project name:Efcient thermal valorization of municipal sewage sludge in fuidized bed systems:Advanced experiments with process modeling)operating the pilot-scale circulating fuidized bed reactor and for the computational resources.
文摘Coal-conversion technologies,although used ubiquitously,are often discredited due to high pollutant emissions,thereby emphasizing a dire need to optimize the combustion process.The co-fring of coal/biomass in a fuidized bed reactor has been an efcient way to optimize the pollutants emission.Herein,a new model has been designed in Aspen Plus®to simultaneously include detailed reaction kinetics,volatile compositions,tar combustion,and hydrodynamics of the reactor.Validation of the process model was done with variations in the fuel including high-sulfur Spanish lignite,high-ash Ekibastuz coal,wood pellets,and locally collected municipal solid waste(MSW)and the temperature ranging from 1073 to 1223 K.The composition of the exhaust gases,namely,CO/CO_(2)/NO/SO_(2)were determined from the model to be within 2%of the experimental observations.Co-combustion of local MSW with Ekibastuz coal had fue gas composition ranging from 1000 to 5000 ppm of CO,16.2%–17.2%of CO_(2),200–550 ppm of NO,and 130–210 ppm of SO_(2).A sensitivity analysis on co-fring of local biomass and Ekibastuz coal demonstrated the optimal operating temperature for fuidized bed reactor at 1148 K with the recommended biomass-to-coal ratio is 1/4,leading to minimum emissions of CO,NO,and SO_(2).
基金National Natural Science Foundation of China under Grant No.90510017
文摘Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.
文摘Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.
基金Scientific and Technological Support and Guidance Plan Projects of Zhejiang Province(Grant No.2008C23019)
文摘A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the ultimate equilibrium method. Based on the results of finite element analysis, the stress contour graphs and displacement vector graphs at different construction steps were obtained, and the behavior of the slope during stabilization construction process was analyzed quantitatively. Based on the analysis of safety factors of three different schemes of stabilization and two different construction schemes, the assessment of stability and bracing design of the construction process were performed. The results show that the original reinforcement design is improper; the stability of the rock slope is controlled by a developed structural plane, the stability factor after excavation is less than 1, and the free surface should be braced in time; for stability, the construction sequence should adopt that bracing follows excavation step by step up to down; the local slide occurred during the construction process agrees with the dangerous slide determined by the numerical analysis, which proves the validity and rationality of the adopted method.
基金the financial support by the National Natural Science Foundation of China(Project No.21878054)the Natural Science Foundation of Fujian Province of China(2020J01515)
文摘Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a machine learning approach is established,so as to improve the prediction accuracy and range of IL melting points.Based on IL melting points data with 600 training data and 168 testing data,the estimated average absolute relative deviations(AARD)and squared correlation coefficients(R^(2))are 3.11%,0.8820 and 5.12%,0.8542 for the training set and testing set of the SVM model,respectively.Then,through the melting points model and other rational design processes including conductor-like screening model for real solvents(COSMO-RS)calculation and physical property constraints,cyano-based ILs are obtained,in which tetracyanoborate[TCB]-is often ruled out due to incorrect estimation of melting points model in the literature.Subsequently,by means of process simulation using Aspen Plus,optimal IL are compared with excellent IL reported in the literature.Finally,1-ethyl-3-methylimidazolium tricyanomethanide[EMIM][TCM]is selected as a most suitable solvent for CO_(2)separation from flue gas,the process of which leads to 12.9%savings on total annualized cost compared to that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[EMIM][Tf_(2)N].
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.
基金supported by the National Nature Science Foundation of China(21878315 and 21808223)National Key Research and Development Program of China(2017YFA0206803)+3 种基金Innovation Academy for Green ManufactureCAS(IAGM2020C17)K.C.Wong Education Foundation(GJTD-2018-04)。
文摘A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process.