期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Lattice Boltzmann simulation of fluid flow through coal reservoir's fractal pore structure 被引量:17
1
作者 JIN Yi SONG HuiBo +2 位作者 HU Bin ZHU YiBo ZHENG JunLing 《Science China Earth Sciences》 SCIE EI CAS 2013年第9期1519-1530,共12页
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base... The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0. 展开更多
关键词 Lattice Boltzmann simulation of fluid flow through coal reservoir's fractal pore structure
原文传递
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
2
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy fluid heating Heat transfer model Numerical simulation of fluid?solid coupling
在线阅读 下载PDF
Hydrodynamics and Heat Transfer Analysis of Airflow in a Sinusoidally Curved Channel
3
作者 Abid.A.Memon M.Asif Memon +2 位作者 Kaleemullah Bhatti Thanin Sitthiwirattham Nichaphat Patanarapeelert 《Computers, Materials & Continua》 SCIE EI 2022年第6期4835-4853,共19页
For heat transfer enhancement in heat exchangers,different types of channels are often tested.The performance of heat exchangers can be made better by considering geometry composed of sinusoidally curved walls.This re... For heat transfer enhancement in heat exchangers,different types of channels are often tested.The performance of heat exchangers can be made better by considering geometry composed of sinusoidally curved walls.This research studies the modeling and simulation of airflow through a 2πunits long sinusoidally curved wavy channel.For the purpose,two-dimensional Navier Stokes equations along with heat equations are under consideration.To simulate the fluid flow problem,the finite element-based software COMSOL Multiphysics 5.4 is used.The parametric study for Reynolds number from Re=100 to Re=1000 and the period of vibration P from 0 to 5 are observed.The surface plots,streamline patterns,contours,and graphs are presented for the velocity field magnitude,temperature,and pressure against the Reynolds number as well as period of vibration.The results are compared with various literature.It is found that due to the creation of periodic contraction regions the velocity magnitude of the flow is continuously increasing with the increase of Reynolds number,on the contrary the pressure is decreasing from inlet to outlet of the channel.Also,a periodic variation in the pressure distribution along the vibrating boundaries has been found with an average increase of 500%for the high Reynolds number.A novel work was done by expressing the rotation rate per second in terms of local Reynolds number for the recirculating regions found due to the periodic oscillation of the boundaries.The average temperature near the outlet where a fixed temperature is imposed initially is decreasing with an increase in Reynolds number.The convection process is weakened due to an increase of periodic vibration of boundaries. 展开更多
关键词 simulation of fluid flow heat transfer cosine function wavy channel
在线阅读 下载PDF
Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder 被引量:4
4
作者 Zhihua Xie 吕林 +5 位作者 Thorsten Stoesser 林建国 Dimitrios Pavlidis Pablo Salinas Christopher C.Pain Omar K.Matar 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期800-804,共5页
Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework... Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method. 展开更多
关键词 Breaking waves volume of fluid method 3-D simulation Navier-Stokes equation adaptive unstructured mesh
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部