In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This pa...In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.展开更多
The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to ...The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.展开更多
基金Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.1105007002National Natural Science Foundation of China under Grant No.51378107 and No.51678147
文摘In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.
文摘The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.