期刊文献+
共找到1,127篇文章
< 1 2 57 >
每页显示 20 50 100
Dependent task assignment algorithm based on particle swarm optimization and simulated annealing in ad-hoc mobile cloud 被引量:3
1
作者 Huang Bonan Xia Weiwei +4 位作者 Zhang Yueyue Zhang Jing Zou Qian Yan Feng Shen Lianfeng 《Journal of Southeast University(English Edition)》 EI CAS 2018年第4期430-438,共9页
In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa... In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution. 展开更多
关键词 ad-hoc mobile cloud task assignment algorithm directed acyclic graph particle swarm optimization simulated annealing
在线阅读 下载PDF
Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm 被引量:2
2
作者 Danlei Chen Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期244-255,共12页
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature... Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving. 展开更多
关键词 Optimal design Process systems particle swarm optimization simulated annealing Mathematical modeling
在线阅读 下载PDF
Vehicle recognition and tracking based on simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm
3
作者 王伟峰 YANG Bo +1 位作者 LIU Hanfei QIN Xuebin 《High Technology Letters》 EI CAS 2023年第2期113-121,共9页
Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific... Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific content can not be determined.In this paper, a multi-target vehicle recognition and tracking algorithm based on YOLO v5 network architecture is proposed.The specific content of moving objects are identified by the network architecture, furthermore, the simulated annealing chaotic mechanism is embedded in particle swarm optimization-Gauss particle filter algorithm.The proposed simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm(SA-CPSO-GPF) is used to track moving objects.The experiment shows that the algorithm has a good tracking effect for the vehicle in the monitoring range.The root mean square error(RMSE), running time and accuracy of the proposed method are superior to traditional methods.The proposed algorithm has very good application value. 展开更多
关键词 vehicle recognition target tracking annealing chaotic particle swarm Gauss particle filter(GPF)algorithm
在线阅读 下载PDF
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem 被引量:27
4
作者 CHEN Ai-ling YANG Gen-ke WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期607-614,共8页
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp... Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems. 展开更多
关键词 Capacitated routing problem Discrete particle swarm optimization (DPSO) simulated annealing (SA)
在线阅读 下载PDF
Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power 被引量:3
5
作者 WANG Bing ZHANG Pengfei +2 位作者 HE Yufeng WANG Xiaozhi ZHANG Xianxia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1143-1150,共8页
An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust econom... An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust economic dispatch model is established to minimize the total penalties on bad scenarios.A specialized hybrid particle swarm optimization(PSO)algorithm is developed through hybridizing simulated annealing(SA)operators.The SA operators are performed according to a scenario-oriented adaptive search rule in a neighborhood which is constructed based on the unit commitment constraints.Finally,an experiment is conducted.The computational results show that the developed algorithm outperforms the existing algorithms. 展开更多
关键词 wind power robust economic dispatch SCENARIO simulated annealing(SA) particle swarm optimization(PSO)
在线阅读 下载PDF
Hybrid Strategy of Particle Swarm Optimization and Simulated Annealing for Optimizing Orthomorphisms 被引量:2
6
作者 Tong Yan Zhang Huanguo 《China Communications》 SCIE CSCD 2012年第1期49-57,共9页
Orthomorphism on F2^n is a kind of elementary pemmtation with good cryptographic properties. This paper proposes a hybrid strategy of Particle Swarm Optimization (PSO) and Sirrmlated Annealing (SA) for finding ort... Orthomorphism on F2^n is a kind of elementary pemmtation with good cryptographic properties. This paper proposes a hybrid strategy of Particle Swarm Optimization (PSO) and Sirrmlated Annealing (SA) for finding orthomorphisrm with good cryptographic properties. By experiment based on this strategy, we get some orthorrorphisrm on F2^n = 5, 6, 7, 9, 10) with good cryptographic properties in the open document for the first time, and the optirml orthorrrphism on F found in this paper also does better than the one proposed by Feng Dengguo et al. in stream cipher Loiss in difference uniformity, algebraic degree, algebraic irrarnity and corresponding pernmtation polynomial degree. The PSOSA hybrid strategy for optimizing orthomerphism in this paper makes design of orthorrorphisrm with good cryptographic properties automated, efficient and convenient, which proposes a new approach to design orthornorphisrm. 展开更多
关键词 synanetric cryptography orthon-orphism particle swarm optintion simulated annealing
在线阅读 下载PDF
Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization 被引量:3
7
作者 Jiulong Sun Yanbo Che +2 位作者 Ting Yang Jian Zhang Yibin Cai 《Energy Engineering》 EI 2023年第2期367-384,共18页
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ... As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence. 展开更多
关键词 Electric vehicle charging station location selection and capacity configuration loss of distribution system simulated annealing immune particle swarm optimization Voronoi diagram
在线阅读 下载PDF
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
8
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 MIXED H2/H∞ Optimal Control particle swarm Optimization algorithm Structure-Specified Controller
在线阅读 下载PDF
Study on Multi-stream Heat Exchanger Network Synthesis with Parallel Genetic/Simulated Annealing Algorithm 被引量:13
9
作者 魏关锋 姚平经 +1 位作者 LUOXing ROETZELWilfried 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期66-77,共12页
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt... The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS. 展开更多
关键词 multi-stream heat exchanger network synthesis non-isothermal mixing mixed integer nonlinear programming model genetic algorithm simulated annealing algorithm hybrid algorithm
在线阅读 下载PDF
APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOPSCHEDULING PROBLEM 被引量:5
10
作者 XiaWeijun WuZhiming ZhangWei YangGenke 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期437-441,共5页
A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a ... A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem. 展开更多
关键词 Job-shop scheduling problem particle swarm optimization simulated annealingHybrid optimization algorithm
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
11
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Structural optimization of Au–Pd bimetallic nanoparticles with improved particle swarm optimization method 被引量:1
12
作者 邵桂芳 朱梦 +4 位作者 上官亚力 李文然 张灿 王玮玮 李玲 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期131-139,共9页
Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses a... Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure. 展开更多
关键词 bimetallic nanoparticles stable structures particle swarm optimization (PSO) simulated annealing
原文传递
Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process 被引量:1
13
作者 Jian Long Kai Deng Renchu He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期43-57,共15页
Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear... Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed. 展开更多
关键词 BLEND Optimization algorithm Neural networks particle swarm optimization Mixed integer programming
在线阅读 下载PDF
基于混合算法协同决策的动态阈值优化
14
作者 张春森 姜世凯 +3 位作者 王锟 范跃军 闪恒杰 刘明禄 《科学技术创新》 2026年第3期97-100,共4页
本文提出一种融合遗传算法(GA)、模拟退火算法(SA)、粒子群优化算法(PSO)和蚁群算法(ACO)的混合智能优化算法,针对锅炉膨胀过程中固定报警阈值导致的“过度报警”与“失效预警”问题,通过分析锅炉运行过程中的膨胀参数,设计四阶段混合... 本文提出一种融合遗传算法(GA)、模拟退火算法(SA)、粒子群优化算法(PSO)和蚁群算法(ACO)的混合智能优化算法,针对锅炉膨胀过程中固定报警阈值导致的“过度报警”与“失效预警”问题,通过分析锅炉运行过程中的膨胀参数,设计四阶段混合优化策略,通过GA生成阈值解空间,SA进行局部精细搜索,PSO优化参数敏感度,ACO确定最优阈值调整路径。该混合算法在收敛速度和优化精度上均优于单一算法,实现报警阈值对运行环境的智能跟随。 展开更多
关键词 动态阈值 遗传算法 模拟退火 粒子群优化 蚁群算法
在线阅读 下载PDF
An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering 被引量:11
15
作者 Taher NIKNAM Babak AMIRI +1 位作者 Javad OLAMAEI Ali AREFI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期512-519,共8页
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop... The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms. 展开更多
关键词 simulated annealing (SA) Data clustering Hybrid evolutionary optimization algorithm K-means clustering Parti-cle swarm optimization (PSO)
原文传递
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
16
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
在线阅读 下载PDF
Evolutionary Algorithms in Software Defined Networks: Techniques, Applications, and Issues 被引量:1
17
作者 LIAO Lingxia Victor C.M.Leung LAI Chin-Feng 《ZTE Communications》 2017年第3期20-36,共17页
A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and o... A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and optimization problems are typicallyvery complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve theseproblems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionaryalgorithms(EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of species, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviewsfour types of EAs that are widely applied in current SDNs: Genetic Algorithms(GAs), Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Simulated Annealing(SA) by discussing their techniques, summarizing their representative applications, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech-niques and categorizes the applications of these four EAs in SDNs. 展开更多
关键词 SDN evolutionary algorithms Genetic algorithms particle swarm Optimization Ant Colony Optimization simulated Annealing
在线阅读 下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
18
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
在线阅读 下载PDF
Evolutionary Algorithms for Solving Unconstrained Multilevel Lot-Sizing Problem with Series Structure
19
作者 韩毅 蔡建湖 +3 位作者 IKOU Kaku 李延来 陈以增 唐加福 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第1期39-44,共6页
This paper presents a comparative study of evolutionary algorithms which are considered to be effective in solving the multilevel lot-sizing problem in material requirement planning(MRP)systems.Three evolutionary algo... This paper presents a comparative study of evolutionary algorithms which are considered to be effective in solving the multilevel lot-sizing problem in material requirement planning(MRP)systems.Three evolutionary algorithms(simulated annealing(SA),particle swarm optimization(PSO)and genetic algorithm(GA))are provided.For evaluating the performances of algorithms,the distribution of total cost(objective function)and the average computational time are compared.As a result,both GA and PSO have better cost performances with lower average total costs and smaller standard deviations.When the scale of the multilevel lot-sizing problem becomes larger,PSO is of a shorter computational time. 展开更多
关键词 simulated annealing(SA) genetic algorithm(GA) particle swarm optimization(PSO) MULTILEVEL LOT-SIZING PROBLEM
原文传递
基于分步-协同粒子群算法的纵断面线路-电分相布设综合优化 被引量:1
20
作者 陈燕平 《铁道科学与工程学报》 北大核心 2025年第9期3931-3941,共11页
电分相布设是否合理对于列车的安全运行有着重要影响。以往铁路设计中,会考虑纵断面设计对于控制因素、重要征拆、工程造价、施工工艺等的影响,由于站前与站后设计不同步,较少考虑纵断面设计对于电分相的决定性影响,当前电分相的设置通... 电分相布设是否合理对于列车的安全运行有着重要影响。以往铁路设计中,会考虑纵断面设计对于控制因素、重要征拆、工程造价、施工工艺等的影响,由于站前与站后设计不同步,较少考虑纵断面设计对于电分相的决定性影响,当前电分相的设置通常后置于铁路选线设计工作,基于既定的线路方案而展开,导致电分相与线路匹配困难,甚至一旦后期运营面临极端天气无法达速时,易发生列车掉电分相等情况而危及行车安全。针对这一问题,在纵断面线路设计过程中预先考虑了电分相布设的影响,基于列车牵引运行仿真分析,建立铁路线路纵断面与电分相布设的协同优化模型,该优化模型以里程与标高为设计变量,以铁路综合费用为目标函数,以最大坡度、最小坡段长、最大坡度代数差等为约束条件;提出了分步−协同粒子群算法用于优化模型的解算,采用元启发式群智能优化方法,将优化问题的解决方案抽象为超维设计空间中的粒子,先分步生成初始群体,再协同进化线路−电分相综合方案的粒子群优化算法,实现了纵断面线路−电分相布设的综合方案智能优化。本研究成果已成功应用于某重大高速铁路线路车站的上行联络线工程,指导了该段纵断面线路设计过程,通过分步−协同粒子群算法解决了传统设计列车掉电分相的难题,从源头上降低了铁路运营期间沿线的电分相的相关风险。 展开更多
关键词 铁路纵断面设计 电分相 粒子群算法 最优化 列车运行模拟
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部