To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa...To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimizatio...Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimization problem.In this paper,we use the simulated annealing algorithm to design an edge filter,which is composed of 20 dielectric thin film layers with TiO2 and SiO2.The simulated annealing algorithm is a very robust algorithm for optical thin film design.展开更多
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle ...Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.展开更多
To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte...To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.展开更多
This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using c...This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.展开更多
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs...Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%.展开更多
In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in ord...In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the perfor- mance of finite-time implementations of SA.Computational results show that SA per- forms much better than a genetic algorithm in terms of solution time,whilst having a modest loss of solution quality.展开更多
基金supported by the Jiangsu Provincial College Students Innovation andEntrepreneurship Training Plan Project(grant number 202411276037Z)the Nanjing Institute ofTechnology Fund for Research Startup Projects of Introduced Talents(grant number TB202406012).
文摘To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
文摘Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimization problem.In this paper,we use the simulated annealing algorithm to design an edge filter,which is composed of 20 dielectric thin film layers with TiO2 and SiO2.The simulated annealing algorithm is a very robust algorithm for optical thin film design.
基金supported by the Fundamental Research Funds for the Central Universities(2023JC004 and 2023YQ002)。
文摘Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.
基金support provided by the National Natural Science Foundation of China(Grant No.52362055)the Science and Technology Plan Project of Guangxi Zhuang Autonomous Region(Grant No.2021AC19334)Guangxi Science and Technology Major Program(Grant No.AA23062053).
文摘To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.
文摘This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72101046 and 61672128)。
文摘Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%.
基金This work was supported by the National Natural Science Foundation of China (No. 10201026, 10672111).
文摘In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the perfor- mance of finite-time implementations of SA.Computational results show that SA per- forms much better than a genetic algorithm in terms of solution time,whilst having a modest loss of solution quality.