期刊文献+
共找到4,756篇文章
< 1 2 238 >
每页显示 20 50 100
An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms
1
作者 Haojie Yang Xiang Wen Peng Geng 《Journal on Artificial Intelligence》 2024年第1期283-300,共18页
To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa... To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential. 展开更多
关键词 Mini Batch K-Means simulated annealing algorithm electric vehicle charging stations layout optimisation
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
2
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(sa) 径向基神经网络模型(RBF) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于数字孪生和GASA算法的生产线机械自动化监测系统
3
作者 曾锦翔 《机械设计与制造工程》 2025年第9期89-93,共5页
为了构建发动机生产线机械自动化监测系统,采用数字孪生技术,将物理实体转变为虚拟数字孪生体模型。同时,采用遗传算法-模拟退火算法对粒子群算法进行优化,并通过优化后的粒子群算法对最小二乘支持向量机的参数进行寻优,以构建最终的故... 为了构建发动机生产线机械自动化监测系统,采用数字孪生技术,将物理实体转变为虚拟数字孪生体模型。同时,采用遗传算法-模拟退火算法对粒子群算法进行优化,并通过优化后的粒子群算法对最小二乘支持向量机的参数进行寻优,以构建最终的故障诊断算法。通过对比验证发现,所设计故障诊断算法的准确率最大值为99.03%,耗时平均值为1.31 s,均方误差和平均绝对误差的最大值分别为1.327和1.271;轻量化处理后数字孪生体模型的加载时间下降了44%;所设计系统监测到的故障机器数量和实际数量是一致的;所设计系统和故障诊断算法都具有良好的性能,能够为其他生产线机械的自动化监测提供模型构建和算法设计上的支持。 展开更多
关键词 数字孪生 遗传算法 模拟退火算法 监测 故障 诊断
在线阅读 下载PDF
Using genetic/simulated annealing algorithm to solve disassembly sequence planning 被引量:5
4
作者 Wu Hao Zuo Hongfu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期906-912,共7页
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem... Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient. 展开更多
关键词 disassembly sequence planning disassembly hybrid graph connection matrix precedence matrix binary-tree algorithms simulated annealing algorithm genetic algorithm.
在线阅读 下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means 被引量:3
5
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis simulated annealing genetic algorithm Fuzzy cluster means
原文传递
Usage of Simulated Annealing Algorithm in Design of Optical Thin Film 被引量:1
6
作者 王文梁 戎晓红 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第3期372-374,共3页
Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimizatio... Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimization problem.In this paper,we use the simulated annealing algorithm to design an edge filter,which is composed of 20 dielectric thin film layers with TiO2 and SiO2.The simulated annealing algorithm is a very robust algorithm for optical thin film design. 展开更多
关键词 simulated annealing algorithm optical thin film edge filter
原文传递
Cost-aware cloud workflow scheduling using DRL and simulated annealing
7
作者 Yan Gu Feng Cheng +3 位作者 Lijie Yang Junhui Xu Xiaomin Chen Long Cheng 《Digital Communications and Networks》 CSCD 2024年第6期1590-1599,共10页
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle ... Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results. 展开更多
关键词 Cloud computing Deep reinforcement learning simulated annealing algorithm Job scheduling WORKFLOW
在线阅读 下载PDF
基于改进SA-PSO的工业机器人参数辨识和定位精度提升
8
作者 王国荣 杜茂华 +2 位作者 吴智恒 李平 杨志新 《机床与液压》 北大核心 2025年第17期42-50,共9页
针对传统粒子群算法(PSO)在工业机器人标定过程中存在的衰减机制落后、易陷入局部最优导致精度低的问题,提出一种基于改进SA-PSO的工业机器人几何参数辨识和定位精度提升方法。基于D-H模型建立工业机器人误差模型,将几何误差标定问题转... 针对传统粒子群算法(PSO)在工业机器人标定过程中存在的衰减机制落后、易陷入局部最优导致精度低的问题,提出一种基于改进SA-PSO的工业机器人几何参数辨识和定位精度提升方法。基于D-H模型建立工业机器人误差模型,将几何误差标定问题转换为高维非线性方程的寻优求解问题。在参数辨识过程中,结合粒子群算法与模拟退火算法,在跳出局部最优解的基础上,设计正态分布曲线来控制算法惯性权重的变化,并引入控制因子优化粒子的位置更新公式。通过对KUKA KR 6 R900机器人进行仿真与测试实验,将该改进算法与传统PSO、APSO、NDPSO、SA-PSO等算法进行性能对比。结果表明:改进SA-PSO算法能够跳出局部最优解,波动更小,预测精度更高,搜索过程达到较低适应度值时所需迭代步数更少,收敛速度更快;利用改进SA-PSO算法完成机器人参数辨识和标定后,综合位置误差从1.1447 mm降低至0.1731 mm,降低了84.87%,最大误差从1.9686 mm降至0.9959 mm;标定后X、Y、Z轴误差分布更集中,波动更小,表明该算法的辨识精度和适应性更高,具有较大的工程应用价值。 展开更多
关键词 机器人 参数辨识 定位精度 模拟退火算法 改进粒子群优化算法
在线阅读 下载PDF
基于ASAPSO混合算法的双脉冲变轨拦截轨迹优化
9
作者 杨慧婷 王庆辉 《空间控制技术与应用》 北大核心 2025年第1期75-84,共10页
针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在... 针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在沿初始轨道飞行一周内机动追逐目标,将两次脉冲变轨的时刻设为决策变量,将燃料消耗量作为适应度函数,并采用ASAPSO混合算法作为优化策略.其次,为了验证ASAPSO算法的有效性,针对同一模型分别采用了传统粒子群算法(PSO)、模拟退火粒子群算法(SAPSO)以及强化学习粒子群算法(RLPSO)进行优化,对比发现ASAPSO算法在较少的迭代次数内就能快速收敛至全局最优解,极大地减少了处理轨道拦截问题的计算量和时间.该算法结合了PSO的全局搜索能力和SA的局部优化特性,为航天器Lambert双脉冲变轨拦截问题提供了一种更为高效、精确的解决方案. 展开更多
关键词 Lambert变轨拦截 粒子群算法 模拟退火算法 参数自适应
在线阅读 下载PDF
基于MGASA的装配车间物流协同优化方法研究
10
作者 林健树 王小巧 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期302-309,共8页
针对乘用车发动机装配车间内处理大规模订单排产和产品配送调度方案存在求解时间长、效率低、协同优化效果不明显的问题,文章提出一种基于改进遗传模拟退火算法(modified genetic algorithm and simulated annealing,MGASA)的装配车间... 针对乘用车发动机装配车间内处理大规模订单排产和产品配送调度方案存在求解时间长、效率低、协同优化效果不明显的问题,文章提出一种基于改进遗传模拟退火算法(modified genetic algorithm and simulated annealing,MGASA)的装配车间物流协同优化方法。分析多品种小批量面向订单式生产的乘用车装配车间物流的特点,确定优化目标为最小化客户期望时间、提前延迟成本和物流配送成本;针对问题特征提出装配订单生产配送调度的优先级判定规则和4类特征指标以便进行问题编码和适应度计算,且在同一温度下多次进行种群迭代进化和淬火操作,扩大可行解的邻域范围,以期获得全局最优解,得到装配车间内的生产配送调度方案;最后在不同规模的数据集上进行实例验证。实验结果表明,该方法可达到较高的求解效率,实现乘用车装配车间物流协同优化调度方案的快速制定,具有一定的应用价值。 展开更多
关键词 装配车间物流 车辆路径优化 协同优化 改进遗传模拟退火算法(MGAsa) 时间窗
在线阅读 下载PDF
Scheduling on tractor and trailer transportation considering the influence of disrupted events based on the contract net and simulated annealing algorithm
11
作者 Qi Xu Yongmei Zhong +2 位作者 Hailun Deng Xiang Wang Xingyue Chen 《Digital Transportation and Safety》 2024年第3期155-168,共14页
To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte... To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry. 展开更多
关键词 Tractor and trailer transportation Disrupted event Hub-and-spoke network Disruption management Contract net and simulated annealing algorithm
在线阅读 下载PDF
基于IGSA的机器人运动学参数辨识仿真研究
12
作者 林志鸿 胡明 +1 位作者 孔民秀 吴梅 《计算机仿真》 2025年第7期503-509,共7页
针对工业机器人运动学参数辨识的效率与精度难以兼顾的问题,提出了一种基于改进遗传-模拟退火算法的运动学参数辨识方法。基于MD-H运动学模型建立六自由度工业机器人位置误差模型,通过激光测量仪测得QJR6S-1型机器人35个采样点位置信息... 针对工业机器人运动学参数辨识的效率与精度难以兼顾的问题,提出了一种基于改进遗传-模拟退火算法的运动学参数辨识方法。基于MD-H运动学模型建立六自由度工业机器人位置误差模型,通过激光测量仪测得QJR6S-1型机器人35个采样点位置信息作为数据样本。在改进遗传-模拟退火算法(IGSA)中通过避免机器人扩展雅克比矩阵的微分运算提高运动学参数辨识的效率,并利用模拟退火算法对初始种群进行区间规划提高机器人的运动学参数辨识精度。结果表明,在机器人的运动学参数辨识中改进遗传-模拟退火算法时耗仅为24.3s,同时机器人绝对定位精度提升82.2%,机器人运动学参数辨识效率与精度均得到了显著提升。 展开更多
关键词 工业机器人 运动学参数辨识 改进遗传-模拟退火算法 位置误差模型
在线阅读 下载PDF
基于ISTASA算法的带软时间窗的车辆路径问题研究
13
作者 王名霞 韩晓霞 +2 位作者 曹阳 武晋德 申亚迪 《太原理工大学学报》 北大核心 2025年第6期1101-1109,共9页
【目的】带时间窗的车辆路径问题是经典的组合优化问题,是物流配送系统的关键。在实际物流配送中,企业常采用超时赔付的方法解决配送超时的问题,从而提高客户满意度。【方法】针对这一现象,提出了带软时间窗的具有容量限制的车辆路径问... 【目的】带时间窗的车辆路径问题是经典的组合优化问题,是物流配送系统的关键。在实际物流配送中,企业常采用超时赔付的方法解决配送超时的问题,从而提高客户满意度。【方法】针对这一现象,提出了带软时间窗的具有容量限制的车辆路径问题(CVRPSTW),并采用罚函数法,建立以总运输成本最少为目标的CVRPSTW优化模型。为了更好地求解CVRPSTW,基于状态转移模拟退火(STASA)算法,提出了改进状态转移模拟退火(ISTASA)算法。【结果】研究以Solomon基准作为算例,分别采用ISTASA算法、STASA算法和一些经典的启发式算法对CVRPSTW进行求解,通过比较各算法的求解质量,验证算法的有效性。结果表明,在大多数Solomon实例上,ISTASA算法的求解质量显著优于其它方法。 展开更多
关键词 车辆路径问题 软时间窗 总运输成本 罚函数法 改进状态转移模拟退火算法
在线阅读 下载PDF
基于GASAPSO-RF算法的医疗器械故障检测研究 被引量:1
14
作者 袁鉴辞 李静 +1 位作者 鲁浩 张磊 《电子设计工程》 2025年第9期90-94,101,共6页
针对随机森林模型检测医疗器械故障精度不足的问题,提出了基于粒子群与随机森林的GASAPSO-RF医疗器械故障检测方法。改进粒子群算法将选择、交叉、变异操作融入粒子群迭代过程,利用选择操作优选出粒子群的初始群体,通过交叉和变异提高... 针对随机森林模型检测医疗器械故障精度不足的问题,提出了基于粒子群与随机森林的GASAPSO-RF医疗器械故障检测方法。改进粒子群算法将选择、交叉、变异操作融入粒子群迭代过程,利用选择操作优选出粒子群的初始群体,通过交叉和变异提高种群多样性;利用模拟退火思想优化粒子杂交过程,以一定概率接受最差解,帮助粒子群算法跳出局部最优解;利用改进的PSO算法搜索随机森林模型“决策树数量”与“决策树最大深度”参数的最优值,构建高精准度的GASAPSORF医疗器械故障检测模型,以采集的医疗器械特征量作为输入,获得故障检测类型。对比试验结果表明,GASAPSO算法性能最佳,利于随机森林参数进行搜索;GASAPSO-RF模型有效提升了随机森林故障检测模型的精准度,优化了故障检测效率,为医疗器械故障智能检测提供了新思路。 展开更多
关键词 粒子群 遗传算法 模拟退火 随机森林 杂交 故障检测
在线阅读 下载PDF
A Computational Comparison between Optimization Techniques for Wells Placement Problem: Mathematical Formulations, Genetic Algorithms and Very Fast Simulated Annealing
15
作者 Ghazi D. AlQahtani Ahmed Alzahabi +1 位作者 Timothy Spinner Mohamed Y. Soliman 《Journal of Materials Science and Chemical Engineering》 2014年第10期59-73,共15页
This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using c... This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency. 展开更多
关键词 WELLS PLACEMENT Optimization INTEGER Programming simulated annealing GENETIC Algorithm
在线阅读 下载PDF
基于SA-PSO混合算法的枪弹全弹道多目标优化方法研究
16
作者 胡振超 崔啸 +2 位作者 许啸 卢大斌 张会生 《指挥控制与仿真》 2025年第4期149-155,共7页
在枪弹系统设计过程中,内弹道、外弹道、终点弹道等各弹道间参数相互耦合作用,需要综合考虑枪弹的全弹道过程。为兼顾枪弹综合性能与设计效率,提出了基于模拟退火-粒子群优化算法的全弹道多目标优化方法。建立了涵盖弹头特征量、内弹道... 在枪弹系统设计过程中,内弹道、外弹道、终点弹道等各弹道间参数相互耦合作用,需要综合考虑枪弹的全弹道过程。为兼顾枪弹综合性能与设计效率,提出了基于模拟退火-粒子群优化算法的全弹道多目标优化方法。建立了涵盖弹头特征量、内弹道、气动力参数、外弹道以及终点弹道等计算过程的全弹道综合计算模型,并以弹头结构参数为优化变量,将行程长、落点动能、穿透厚度分别作为三个弹道的优化目标,进行全弹道的综合优化设计。通过加权求和方法判断筛选最优解,将多目标优化问题转化为单目标并采用模拟退火-粒子群优化算法进行求解。结果表明相比于传统算法,该方法能够更快收敛于最优方案,并且与初始设计方案相比,优化后的方案处落点动能提升了109.97%,穿透厚度提升了75.11%,行程长缩短了30.01%,弹道性能得到了综合提升,避免了单个目标优化时其他目标劣化的现象。 展开更多
关键词 全弹道设计 多目标优化 模拟退火 粒子群 混合算法
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
17
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
原文传递
Simulated Annealing for the 0/1 Multidimensional Knapsack Problem
18
作者 Fubin Qian Rui Ding 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第4期320-327,共8页
In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in ord... In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the perfor- mance of finite-time implementations of SA.Computational results show that SA per- forms much better than a genetic algorithm in terms of solution time,whilst having a modest loss of solution quality. 展开更多
关键词 模拟退火 运算法则 静态冷却表 执行时间
在线阅读 下载PDF
基于GA-SA算法的机翼组件装配序列智能优化
19
作者 赵双丰 孟飙 《机械工程师》 2025年第10期10-13,17,共5页
针对飞机零部件装配序列优化问题,通过模拟退火算法和遗传算法结合的方式进行优化。优化的指标是装配过程中方向的改变次数和装配工具的变更次数。然后通过建立矩阵模型来优化初始种群,引入了模拟退火算法,其能够跳出局部最优解,弥补了... 针对飞机零部件装配序列优化问题,通过模拟退火算法和遗传算法结合的方式进行优化。优化的指标是装配过程中方向的改变次数和装配工具的变更次数。然后通过建立矩阵模型来优化初始种群,引入了模拟退火算法,其能够跳出局部最优解,弥补了遗传算法的缺点,最后以飞机尾翼中的结构件为例,进行了实例验证。结果表明,改进后的算法明显改善了原始遗传算法的缺点,提高了该算法的收敛速度,证明了该算法在飞机结构件装配序列优化中的适用性。 展开更多
关键词 飞机装配 装配序列优化 遗传算法 模拟退火算法
在线阅读 下载PDF
成本约束条件下基于SA算法的冷链物流路径优化
20
作者 陶晓妹 尚绍鹏 《对外经贸》 2025年第9期94-97,共4页
采用成本约束控制冷链物流配送路径,对促进我国生鲜食品冷链物流行业高质量发展具有重要意义。将模拟退火算法与冷链物流配送路径优化问题相结合,建立包括固定成本、运输成本、冷链能耗成本、货损成本和碳排放成本在内的综合配送成本模... 采用成本约束控制冷链物流配送路径,对促进我国生鲜食品冷链物流行业高质量发展具有重要意义。将模拟退火算法与冷链物流配送路径优化问题相结合,建立包括固定成本、运输成本、冷链能耗成本、货损成本和碳排放成本在内的综合配送成本模型。考虑成本约束,并利用模拟退火算法能概率性地跳出并趋于全局最优的优势,对成本模型进行求解。以上海某冷链物流企业为例进行实例分析,结果验证了该方法的有效性,从而为冷链物流配送路径优化提供一条有效的解决思路。 展开更多
关键词 模拟退火算法 冷链物流 优化 成本
在线阅读 下载PDF
上一页 1 2 238 下一页 到第
使用帮助 返回顶部